Menu Close

Let-a-b-c-be-distinct-real-numbers-such-that-a-b-c-b-c-a-c-a-b-0-then-prove-that-a-b-c-2-b-c-a-2-c-a-b-2-0-




Question Number 217764 by ArshadS last updated on 20/Mar/25
  Let a, b, c be distinct real numbers such that  (a/(b−c))+(b/(c−a))+(c/(a−b))=0  then prove that  (a/((b−c)^2 ))+(b/((c−a)^2 ))+(c/((a−b)^2 ))=0
$$ \\ $$$$\mathrm{Let}\:\mathrm{a},\:\mathrm{b},\:\mathrm{c}\:\mathrm{be}\:\mathrm{distinct}\:\mathrm{real}\:\mathrm{numbers}\:\mathrm{such}\:\mathrm{that} \\ $$$$\frac{{a}}{{b}−{c}}+\frac{{b}}{{c}−{a}}+\frac{{c}}{{a}−{b}}=\mathrm{0} \\ $$$$\mathrm{then}\:\mathrm{prove}\:\mathrm{that} \\ $$$$\frac{{a}}{\left({b}−{c}\right)^{\mathrm{2}} }+\frac{{b}}{\left({c}−{a}\right)^{\mathrm{2}} }+\frac{{c}}{\left({a}−{b}\right)^{\mathrm{2}} }=\mathrm{0} \\ $$
Answered by vnm last updated on 20/Mar/25
Let P(a,b,c)=a(c−a)(a−b)+b(a−b)(b−c)+c(b−c)(c−a)  and Q(a,b,c)=a(c−a)^2 (a−b)^2 +b(a−b)^2 (b−c)^2 +c(b−c)^2 (c−a)^2 .  Then Q(a,b,c)=P(a,b,c)(−a^2 −b^2 −c^2 +bc+ca+ab).  It′s not obvious, of course, but can be checked.  So if P(a,b,c)=0 then Q(a,b,c)=0.
$${Let}\:{P}\left({a},{b},{c}\right)={a}\left({c}−{a}\right)\left({a}−{b}\right)+{b}\left({a}−{b}\right)\left({b}−{c}\right)+{c}\left({b}−{c}\right)\left({c}−{a}\right) \\ $$$${and}\:{Q}\left({a},{b},{c}\right)={a}\left({c}−{a}\right)^{\mathrm{2}} \left({a}−{b}\right)^{\mathrm{2}} +{b}\left({a}−{b}\right)^{\mathrm{2}} \left({b}−{c}\right)^{\mathrm{2}} +{c}\left({b}−{c}\right)^{\mathrm{2}} \left({c}−{a}\right)^{\mathrm{2}} . \\ $$$${Then}\:{Q}\left({a},{b},{c}\right)={P}\left({a},{b},{c}\right)\left(−{a}^{\mathrm{2}} −{b}^{\mathrm{2}} −{c}^{\mathrm{2}} +{bc}+{ca}+{ab}\right). \\ $$$${It}'{s}\:{not}\:{obvious},\:{of}\:{course},\:{but}\:{can}\:{be}\:{checked}. \\ $$$${So}\:{if}\:{P}\left({a},{b},{c}\right)=\mathrm{0}\:{then}\:{Q}\left({a},{b},{c}\right)=\mathrm{0}. \\ $$$$ \\ $$
Commented by ArshadS last updated on 22/Mar/25
Thanks a lot!
$${Thanks}\:{a}\:{lot}! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *