Menu Close

Solve-for-x-amp-y-1-x-1-y-5-1-x-2-1-y-2-13-




Question Number 217766 by ArshadS last updated on 20/Mar/25
Solve for x & y  (1/x)+(1/y)=5  (1/x^2 )+(1/y^2 )=13
$${Solve}\:{for}\:{x}\:\&\:{y} \\ $$$$\frac{\mathrm{1}}{{x}}+\frac{\mathrm{1}}{{y}}=\mathrm{5} \\ $$$$\frac{\mathrm{1}}{{x}^{\mathrm{2}} }+\frac{\mathrm{1}}{{y}^{\mathrm{2}} }=\mathrm{13} \\ $$
Answered by Ghisom last updated on 20/Mar/25
2+3=5  4+9=13  x=(1/2) y=(1/3) ∨ x=(1/3) y=(1/2)
$$\mathrm{2}+\mathrm{3}=\mathrm{5} \\ $$$$\mathrm{4}+\mathrm{9}=\mathrm{13} \\ $$$${x}=\frac{\mathrm{1}}{\mathrm{2}}\:{y}=\frac{\mathrm{1}}{\mathrm{3}}\:\vee\:{x}=\frac{\mathrm{1}}{\mathrm{3}}\:{y}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$
Answered by nECxx2 last updated on 21/Mar/25
solution  from (1)  ((x+y)/(xy))=5  from (2)  ((x^2 +y^2 )/((xy)^2 ))=13  (((x+y)^2 −2xy)/((xy)^2 )) = 13  ∴ let a=x+y , b=xy    (a/b) = 5   (3)    ((a^2 −2b)/b^2 ) = 13   (4)  ((a/b))^2 −2((1/b)) = 13    5^2  − 2/b =13  (2/b)=25−13  b = (1/6)  a =(5/6)  substitute for x and y  x=.... y=....
$${solution} \\ $$$${from}\:\left(\mathrm{1}\right) \\ $$$$\frac{{x}+{y}}{{xy}}=\mathrm{5} \\ $$$${from}\:\left(\mathrm{2}\right) \\ $$$$\frac{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }{\left({xy}\right)^{\mathrm{2}} }=\mathrm{13} \\ $$$$\frac{\left({x}+{y}\right)^{\mathrm{2}} −\mathrm{2}{xy}}{\left({xy}\right)^{\mathrm{2}} }\:=\:\mathrm{13} \\ $$$$\therefore\:{let}\:{a}={x}+{y}\:,\:{b}={xy} \\ $$$$ \\ $$$$\frac{{a}}{{b}}\:=\:\mathrm{5}\:\:\:\left(\mathrm{3}\right) \\ $$$$ \\ $$$$\frac{{a}^{\mathrm{2}} −\mathrm{2}{b}}{{b}^{\mathrm{2}} }\:=\:\mathrm{13}\:\:\:\left(\mathrm{4}\right) \\ $$$$\left(\frac{{a}}{{b}}\right)^{\mathrm{2}} −\mathrm{2}\left(\frac{\mathrm{1}}{{b}}\right)\:=\:\mathrm{13} \\ $$$$ \\ $$$$\mathrm{5}^{\mathrm{2}} \:−\:\mathrm{2}/{b}\:=\mathrm{13} \\ $$$$\frac{\mathrm{2}}{{b}}=\mathrm{25}−\mathrm{13} \\ $$$${b}\:=\:\frac{\mathrm{1}}{\mathrm{6}} \\ $$$${a}\:=\frac{\mathrm{5}}{\mathrm{6}} \\ $$$${substitute}\:{for}\:{x}\:{and}\:{y} \\ $$$${x}=….\:{y}=…. \\ $$
Commented by ArshadS last updated on 22/Mar/25
Thanks!
$${Thanks}! \\ $$
Answered by ArshadS last updated on 21/Mar/25
  (1/x^2 )+(2/(xy))+(1/y^2 )=13+(2/(xy))  ((1/x)+(1/y))^2 =13+(2/(xy))  (2/(xy))=25−13=12  (1/x)∙(1/y)=6  (1/x)(5−(1/x))=6  (5/x)−((1/x))^2 =6  ((1/x))^2 −5((1/x))+6=0  ((1/x))^2 −2((1/x))−3((1/x))+6=0  (1/x)((1/x)−2)−3((1/x)−2)=0  ((1/x)−2)((1/x)−3)=0  x=(1/2)∨ x=(1/3)
$$ \\ $$$$\frac{\mathrm{1}}{{x}^{\mathrm{2}} }+\frac{\mathrm{2}}{{xy}}+\frac{\mathrm{1}}{{y}^{\mathrm{2}} }=\mathrm{13}+\frac{\mathrm{2}}{{xy}} \\ $$$$\left(\frac{\mathrm{1}}{{x}}+\frac{\mathrm{1}}{{y}}\right)^{\mathrm{2}} =\mathrm{13}+\frac{\mathrm{2}}{{xy}} \\ $$$$\frac{\mathrm{2}}{{xy}}=\mathrm{25}−\mathrm{13}=\mathrm{12} \\ $$$$\frac{\mathrm{1}}{{x}}\centerdot\frac{\mathrm{1}}{{y}}=\mathrm{6} \\ $$$$\frac{\mathrm{1}}{{x}}\left(\mathrm{5}−\frac{\mathrm{1}}{{x}}\right)=\mathrm{6} \\ $$$$\frac{\mathrm{5}}{{x}}−\left(\frac{\mathrm{1}}{{x}}\right)^{\mathrm{2}} =\mathrm{6} \\ $$$$\left(\frac{\mathrm{1}}{{x}}\right)^{\mathrm{2}} −\mathrm{5}\left(\frac{\mathrm{1}}{{x}}\right)+\mathrm{6}=\mathrm{0} \\ $$$$\left(\frac{\mathrm{1}}{{x}}\right)^{\mathrm{2}} −\mathrm{2}\left(\frac{\mathrm{1}}{{x}}\right)−\mathrm{3}\left(\frac{\mathrm{1}}{{x}}\right)+\mathrm{6}=\mathrm{0} \\ $$$$\frac{\mathrm{1}}{{x}}\left(\frac{\mathrm{1}}{{x}}−\mathrm{2}\right)−\mathrm{3}\left(\frac{\mathrm{1}}{{x}}−\mathrm{2}\right)=\mathrm{0} \\ $$$$\left(\frac{\mathrm{1}}{{x}}−\mathrm{2}\right)\left(\frac{\mathrm{1}}{{x}}−\mathrm{3}\right)=\mathrm{0} \\ $$$${x}=\frac{\mathrm{1}}{\mathrm{2}}\vee\:{x}=\frac{\mathrm{1}}{\mathrm{3}} \\ $$
Answered by golsendro last updated on 23/Mar/25
 (1/x) = a , (1/y) = b    a^2 +b^2  = (a+b)^2 −2ab     13 = 25−2ab      ab= 6 ⇒a+b=5     ⇒x^2 −5x+6 = 0          (x−3)(x−2)=0          x=3=a  or x=2=b      {( a,b)}= {((1/3) ,(1/2)),((1/2), (1/3))}
$$\:\frac{\mathrm{1}}{\mathrm{x}}\:=\:\mathrm{a}\:,\:\frac{\mathrm{1}}{\mathrm{y}}\:=\:\mathrm{b} \\ $$$$\:\:\mathrm{a}^{\mathrm{2}} +\mathrm{b}^{\mathrm{2}} \:=\:\left(\mathrm{a}+\mathrm{b}\right)^{\mathrm{2}} −\mathrm{2ab} \\ $$$$\:\:\:\mathrm{13}\:=\:\mathrm{25}−\mathrm{2ab}\: \\ $$$$\:\:\:\mathrm{ab}=\:\mathrm{6}\:\Rightarrow\mathrm{a}+\mathrm{b}=\mathrm{5} \\ $$$$\:\:\:\Rightarrow\mathrm{x}^{\mathrm{2}} −\mathrm{5x}+\mathrm{6}\:=\:\mathrm{0}\: \\ $$$$\:\:\:\:\:\:\:\left(\mathrm{x}−\mathrm{3}\right)\left(\mathrm{x}−\mathrm{2}\right)=\mathrm{0} \\ $$$$\:\:\:\:\:\:\:\:\mathrm{x}=\mathrm{3}=\mathrm{a}\:\:\mathrm{or}\:\mathrm{x}=\mathrm{2}=\mathrm{b}\: \\ $$$$\:\:\:\left\{\left(\:\mathrm{a},\mathrm{b}\right)\right\}=\:\left\{\left(\frac{\mathrm{1}}{\mathrm{3}}\:,\frac{\mathrm{1}}{\mathrm{2}}\right),\left(\frac{\mathrm{1}}{\mathrm{2}},\:\frac{\mathrm{1}}{\mathrm{3}}\right)\right\} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *