Menu Close

I-need-help-0-1-x-n-e-x-2-2-dx-n-N-




Question Number 217794 by yamane last updated on 21/Mar/25
I need help  ∫_0 ^1 x^n e−(x^2 /2) dx  (n∈N)
$${I}\:{need}\:{help} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} {x}^{{n}} {e}−\frac{{x}^{\mathrm{2}} }{\mathrm{2}}\:{dx}\:\:\left({n}\in\mathbb{N}\right) \\ $$
Answered by Wuji last updated on 21/Mar/25
∫_0 ^1 x^n e−(x^2 /2)dx   (n∈N)  e∫_0 ^1 x^n −(x^2 /2)dx  ⇒e(∫_0 ^1 x^n dx)−(1/2)∫_0 ^1 x^2 dx  e((1/(n+1)))−(1/2)((1/3))  e((1/(n+1)))−(1/6)  (e/(n+1))−(1/6)
$$\int_{\mathrm{0}} ^{\mathrm{1}} {x}^{{n}} {e}−\frac{{x}^{\mathrm{2}} }{\mathrm{2}}{dx}\:\:\:\left({n}\in\mathbb{N}\right) \\ $$$${e}\int_{\mathrm{0}} ^{\mathrm{1}} {x}^{{n}} −\frac{{x}^{\mathrm{2}} }{\mathrm{2}}{dx}\:\:\Rightarrow{e}\left(\int_{\mathrm{0}} ^{\mathrm{1}} {x}^{{n}} {dx}\right)−\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\mathrm{1}} {x}^{\mathrm{2}} {dx} \\ $$$${e}\left(\frac{\mathrm{1}}{{n}+\mathrm{1}}\right)−\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{\mathrm{1}}{\mathrm{3}}\right) \\ $$$${e}\left(\frac{\mathrm{1}}{{n}+\mathrm{1}}\right)−\frac{\mathrm{1}}{\mathrm{6}} \\ $$$$\frac{{e}}{{n}+\mathrm{1}}−\frac{\mathrm{1}}{\mathrm{6}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *