Menu Close

If-x-Z-y-non-negative-integer-such-that-x-2-10x-23-2-y-find-out-x-y-




Question Number 217952 by dscm last updated on 23/Mar/25
If x∈Z ∧y non-negative integer  such that  x^2 +10x+23=2^y   find out x,y
$${If}\:{x}\in\mathbb{Z}\:\wedge{y}\:{non}-{negative}\:{integer} \\ $$$${such}\:{that} \\ $$$${x}^{\mathrm{2}} +\mathrm{10}{x}+\mathrm{23}=\mathrm{2}^{{y}} \\ $$$${find}\:{out}\:{x},{y} \\ $$
Answered by Frix last updated on 23/Mar/25
x=−5±(√(2^y +2))  ⇒ (√(2^y +2))∈N ⇒ y=1 ⇒ x=−7∨x=−3
$${x}=−\mathrm{5}\pm\sqrt{\mathrm{2}^{{y}} +\mathrm{2}} \\ $$$$\Rightarrow\:\sqrt{\mathrm{2}^{{y}} +\mathrm{2}}\in\mathbb{N}\:\Rightarrow\:{y}=\mathrm{1}\:\Rightarrow\:{x}=−\mathrm{7}\vee{x}=−\mathrm{3} \\ $$
Commented by dscm last updated on 23/Mar/25
Thanks sir, but what is the guarantee  that y=1 is only value for 2^y +2  to be perfect square.
$${Thanks}\:{sir},\:{but}\:{what}\:{is}\:{the}\:{guarantee} \\ $$$${that}\:{y}=\mathrm{1}\:{is}\:{only}\:{value}\:{for}\:\mathrm{2}^{{y}} +\mathrm{2} \\ $$$${to}\:{be}\:{perfect}\:{square}. \\ $$
Answered by Ghisom last updated on 23/Mar/25
x=t−5  t^2 −2=2^y   ⇒ t=2n  4n^2 −2=2^y   2n^2 =2^(y−1) +1  ⇒ 2∣(2^(y−1) +1) ⇒ y=1 ⇒ n=±1 ⇒ t=±2 ⇒  x=±2−5  x=−7∨x=−3
$${x}={t}−\mathrm{5} \\ $$$${t}^{\mathrm{2}} −\mathrm{2}=\mathrm{2}^{{y}} \\ $$$$\Rightarrow\:{t}=\mathrm{2}{n} \\ $$$$\mathrm{4}{n}^{\mathrm{2}} −\mathrm{2}=\mathrm{2}^{{y}} \\ $$$$\mathrm{2}{n}^{\mathrm{2}} =\mathrm{2}^{{y}−\mathrm{1}} +\mathrm{1} \\ $$$$\Rightarrow\:\mathrm{2}\mid\left(\mathrm{2}^{{y}−\mathrm{1}} +\mathrm{1}\right)\:\Rightarrow\:{y}=\mathrm{1}\:\Rightarrow\:{n}=\pm\mathrm{1}\:\Rightarrow\:{t}=\pm\mathrm{2}\:\Rightarrow \\ $$$${x}=\pm\mathrm{2}−\mathrm{5} \\ $$$${x}=−\mathrm{7}\vee{x}=−\mathrm{3} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *