Menu Close

x-2-y-2-x-y-18-xy-x-y-7-Solve-




Question Number 218019 by dscm last updated on 26/Mar/25
x^2 +y^2 +x+y=18  xy+x+y=7  Solve.
$${x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{x}+{y}=\mathrm{18} \\ $$$${xy}+{x}+{y}=\mathrm{7} \\ $$$${Solve}. \\ $$
Answered by Ghisom last updated on 26/Mar/25
u=x+y∧v=xy  ⇔  x=(u/2)−((√(u^2 −4v))/2)∧y=(u/2)+((√(u^2 −4v))/2)  (1)     u^2 +u−2v=18  (2)     u+v=7 ⇒ v=7−u  insert in (1) & transform  u^2 +3u−32=0  u=−(3/2)±((√(137))/2)  v=((17)/2)∓((√(137))/2)  x=−(3/4)±((√(137))/4)−((√(10±(√(137))))/4)  y=−(3/4)±((√(137))/4)+((√(10±(√(137))))/4)  those with “−” are complex  those with “+” are real  (you can also exchange x ⇄ y)
$${u}={x}+{y}\wedge{v}={xy} \\ $$$$\Leftrightarrow \\ $$$${x}=\frac{{u}}{\mathrm{2}}−\frac{\sqrt{{u}^{\mathrm{2}} −\mathrm{4}{v}}}{\mathrm{2}}\wedge{y}=\frac{{u}}{\mathrm{2}}+\frac{\sqrt{{u}^{\mathrm{2}} −\mathrm{4}{v}}}{\mathrm{2}} \\ $$$$\left(\mathrm{1}\right)\:\:\:\:\:{u}^{\mathrm{2}} +{u}−\mathrm{2}{v}=\mathrm{18} \\ $$$$\left(\mathrm{2}\right)\:\:\:\:\:{u}+{v}=\mathrm{7}\:\Rightarrow\:{v}=\mathrm{7}−{u} \\ $$$$\mathrm{insert}\:\mathrm{in}\:\left(\mathrm{1}\right)\:\&\:\mathrm{transform} \\ $$$${u}^{\mathrm{2}} +\mathrm{3}{u}−\mathrm{32}=\mathrm{0} \\ $$$${u}=−\frac{\mathrm{3}}{\mathrm{2}}\pm\frac{\sqrt{\mathrm{137}}}{\mathrm{2}} \\ $$$${v}=\frac{\mathrm{17}}{\mathrm{2}}\mp\frac{\sqrt{\mathrm{137}}}{\mathrm{2}} \\ $$$${x}=−\frac{\mathrm{3}}{\mathrm{4}}\pm\frac{\sqrt{\mathrm{137}}}{\mathrm{4}}−\frac{\sqrt{\mathrm{10}\pm\sqrt{\mathrm{137}}}}{\mathrm{4}} \\ $$$${y}=−\frac{\mathrm{3}}{\mathrm{4}}\pm\frac{\sqrt{\mathrm{137}}}{\mathrm{4}}+\frac{\sqrt{\mathrm{10}\pm\sqrt{\mathrm{137}}}}{\mathrm{4}} \\ $$$$\mathrm{those}\:\mathrm{with}\:“−''\:\mathrm{are}\:\mathrm{complex} \\ $$$$\mathrm{those}\:\mathrm{with}\:“+''\:\mathrm{are}\:\mathrm{real} \\ $$$$\left(\mathrm{you}\:\mathrm{can}\:\mathrm{also}\:\mathrm{exchange}\:{x}\:\rightleftarrows\:{y}\right) \\ $$
Commented by MathematicalUser2357 last updated on 28/Mar/25
Here is some approximations:
$$\mathrm{Here}\:\mathrm{is}\:\mathrm{some}\:\mathrm{approximations}: \\ $$$$\: \\ $$
Answered by Rasheed.Sindhi last updated on 26/Mar/25
x^2 +y^2 +x+y=18 ∧ xy+x+y=7  (x+y)^2 −2xy+(x+y)=18  ∵ xy=7−(x+y)  ∴ (x+y)^2 −2( 7−(x+y) )+(x+y)=18  ∴ (x+y)^2 −14+2(x+y) )+(x+y)=18  ∴ (x+y)^2 +3(x+y) )−32=0  x+y=((−3±(√(9+128)))/2)       =((−3±(√(137)))/2)  xy=7−(x+y)=7−((−3±(√(137)))/2)      =((17∓(√(137)))/2)  y=((17∓(√(137)))/(2x))  x =((−3±(√(137)))/2)−((17∓(√(137)))/(2x))  2x^2 −(−3±(√(137)))x+17∓(√(137)) =0   { ((2x^2 −(−3+(√(137)))x+17−(√(137)) =0)),((2x^2 −(−3−(√(137)))x+17+(√(137)) =0)) :}  ...
$${x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{x}+{y}=\mathrm{18}\:\wedge\:{xy}+{x}+{y}=\mathrm{7} \\ $$$$\left({x}+{y}\right)^{\mathrm{2}} −\mathrm{2}{xy}+\left({x}+{y}\right)=\mathrm{18} \\ $$$$\because\:{xy}=\mathrm{7}−\left({x}+{y}\right) \\ $$$$\therefore\:\left({x}+{y}\right)^{\mathrm{2}} −\mathrm{2}\left(\:\mathrm{7}−\left({x}+{y}\right)\:\right)+\left({x}+{y}\right)=\mathrm{18} \\ $$$$\left.\therefore\:\left({x}+{y}\right)^{\mathrm{2}} −\mathrm{14}+\mathrm{2}\left({x}+{y}\right)\:\right)+\left({x}+{y}\right)=\mathrm{18} \\ $$$$\left.\therefore\:\left({x}+{y}\right)^{\mathrm{2}} +\mathrm{3}\left({x}+{y}\right)\:\right)−\mathrm{32}=\mathrm{0} \\ $$$${x}+{y}=\frac{−\mathrm{3}\pm\sqrt{\mathrm{9}+\mathrm{128}}}{\mathrm{2}} \\ $$$$\:\:\:\:\:=\frac{−\mathrm{3}\pm\sqrt{\mathrm{137}}}{\mathrm{2}} \\ $$$${xy}=\mathrm{7}−\left({x}+{y}\right)=\mathrm{7}−\frac{−\mathrm{3}\pm\sqrt{\mathrm{137}}}{\mathrm{2}} \\ $$$$\:\:\:\:=\frac{\mathrm{17}\mp\sqrt{\mathrm{137}}}{\mathrm{2}} \\ $$$${y}=\frac{\mathrm{17}\mp\sqrt{\mathrm{137}}}{\mathrm{2}{x}} \\ $$$${x}\:=\frac{−\mathrm{3}\pm\sqrt{\mathrm{137}}}{\mathrm{2}}−\frac{\mathrm{17}\mp\sqrt{\mathrm{137}}}{\mathrm{2}{x}} \\ $$$$\mathrm{2}{x}^{\mathrm{2}} −\left(−\mathrm{3}\pm\sqrt{\mathrm{137}}\right){x}+\mathrm{17}\mp\sqrt{\mathrm{137}}\:=\mathrm{0} \\ $$$$\begin{cases}{\mathrm{2}{x}^{\mathrm{2}} −\left(−\mathrm{3}+\sqrt{\mathrm{137}}\right){x}+\mathrm{17}−\sqrt{\mathrm{137}}\:=\mathrm{0}}\\{\mathrm{2}{x}^{\mathrm{2}} −\left(−\mathrm{3}−\sqrt{\mathrm{137}}\right){x}+\mathrm{17}+\sqrt{\mathrm{137}}\:=\mathrm{0}}\end{cases} \\ $$$$… \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *