Menu Close

Question-218317




Question Number 218317 by Hanuda354 last updated on 06/Apr/25
Answered by mr W last updated on 06/Apr/25
say a=side length of square  AE=(√(a^2 −5^2 ))  FB=a−2  ((FB)/(AB))=((AE)/(DE))  ⇒((a−2)/a)=((√(a^2 −5^2 ))/5)  5(a−2)=a(√(a^2 −25))  25(a^2 −4a+4)=a^2 (a^2 −25)  a^4 −50a^2 +100a−100=0  ⇒a≈6.011 ⇒a^2 ≈36.13
$${say}\:{a}={side}\:{length}\:{of}\:{square} \\ $$$${AE}=\sqrt{{a}^{\mathrm{2}} −\mathrm{5}^{\mathrm{2}} } \\ $$$${FB}={a}−\mathrm{2} \\ $$$$\frac{{FB}}{{AB}}=\frac{{AE}}{{DE}} \\ $$$$\Rightarrow\frac{{a}−\mathrm{2}}{{a}}=\frac{\sqrt{{a}^{\mathrm{2}} −\mathrm{5}^{\mathrm{2}} }}{\mathrm{5}} \\ $$$$\mathrm{5}\left({a}−\mathrm{2}\right)={a}\sqrt{{a}^{\mathrm{2}} −\mathrm{25}} \\ $$$$\mathrm{25}\left({a}^{\mathrm{2}} −\mathrm{4}{a}+\mathrm{4}\right)={a}^{\mathrm{2}} \left({a}^{\mathrm{2}} −\mathrm{25}\right) \\ $$$${a}^{\mathrm{4}} −\mathrm{50}{a}^{\mathrm{2}} +\mathrm{100}{a}−\mathrm{100}=\mathrm{0} \\ $$$$\Rightarrow{a}\approx\mathrm{6}.\mathrm{011}\:\Rightarrow{a}^{\mathrm{2}} \approx\mathrm{36}.\mathrm{13} \\ $$
Commented by Hanuda354 last updated on 07/Apr/25
Thank you, sir.
$$\mathrm{Thank}\:\mathrm{you},\:\mathrm{sir}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *