Menu Close

Let-gt-0-fixed-Solve-for-real-numbers-the-system-x-2-yz-2-y-2-zx-7-2-z-2-xy-5-2-




Question Number 218364 by hardmath last updated on 08/Apr/25
Let   š›Œ>0   fixed  Solve for real numbers the system:    { ((x^2  āˆ’ yz = Ī»^2 )),((y^2  āˆ’ zx = 7Ī»^2 )),((z^2  āˆ’ xy = āˆ’5Ī»^2 )) :}
$$\mathrm{Let}\:\:\:\boldsymbol{\lambda}>\mathrm{0}\:\:\:\mathrm{fixed} \\ $$$$\mathrm{Solve}\:\mathrm{for}\:\mathrm{real}\:\mathrm{numbers}\:\mathrm{the}\:\mathrm{system}:\:\:\:\begin{cases}{\mathrm{x}^{\mathrm{2}} \:āˆ’\:\mathrm{yz}\:=\:\lambda^{\mathrm{2}} }\\{\mathrm{y}^{\mathrm{2}} \:āˆ’\:\mathrm{zx}\:=\:\mathrm{7}\lambda^{\mathrm{2}} }\\{\mathrm{z}^{\mathrm{2}} \:āˆ’\:\mathrm{xy}\:=\:āˆ’\mathrm{5}\lambda^{\mathrm{2}} }\end{cases} \\ $$
Answered by vnm last updated on 08/Apr/25
y^2 āˆ’x^2 +z(yāˆ’x)=6Ī»^2   (x+y+z)(yāˆ’x)=6Ī»^2   z^2 āˆ’y^2 +x(zāˆ’y)=āˆ’12Ī»^2   (x+y+z)(zāˆ’y)=āˆ’12Ī»^2   x^2 āˆ’z^2 +y(xāˆ’z)=6Ī»^2   (x+y+z)(xāˆ’z)=6Ī»^2   yāˆ’x=xāˆ’z  y+z=2x  y=(1+t)x  z=(1āˆ’t)x  3xāˆ™tx=6Ī»^2   x=Ī»(√(2/t))  y=Ī»(1+t)(√(2/t))  z=Ī»(1āˆ’t)(√(2/t))  x^2 āˆ’yz=Ī»^2   Ī»^2 (2/t)āˆ’Ī»^2 (1āˆ’t^2 )(2/t)=Ī»^2   (2/t)āˆ’(1āˆ’t^2 )(2/t)=1  2t=1  t=(1/2)  x=2Ī»,   y=3Ī»,   z=Ī»
$${y}^{\mathrm{2}} āˆ’{x}^{\mathrm{2}} +{z}\left({y}āˆ’{x}\right)=\mathrm{6}\lambda^{\mathrm{2}} \\ $$$$\left({x}+{y}+{z}\right)\left({y}āˆ’{x}\right)=\mathrm{6}\lambda^{\mathrm{2}} \\ $$$${z}^{\mathrm{2}} āˆ’{y}^{\mathrm{2}} +{x}\left({z}āˆ’{y}\right)=āˆ’\mathrm{12}\lambda^{\mathrm{2}} \\ $$$$\left({x}+{y}+{z}\right)\left({z}āˆ’{y}\right)=āˆ’\mathrm{12}\lambda^{\mathrm{2}} \\ $$$${x}^{\mathrm{2}} āˆ’{z}^{\mathrm{2}} +{y}\left({x}āˆ’{z}\right)=\mathrm{6}\lambda^{\mathrm{2}} \\ $$$$\left({x}+{y}+{z}\right)\left({x}āˆ’{z}\right)=\mathrm{6}\lambda^{\mathrm{2}} \\ $$$${y}āˆ’{x}={x}āˆ’{z} \\ $$$${y}+{z}=\mathrm{2}{x} \\ $$$${y}=\left(\mathrm{1}+{t}\right){x} \\ $$$${z}=\left(\mathrm{1}āˆ’{t}\right){x} \\ $$$$\mathrm{3}{x}\centerdot{tx}=\mathrm{6}\lambda^{\mathrm{2}} \\ $$$${x}=\lambda\sqrt{\frac{\mathrm{2}}{{t}}} \\ $$$${y}=\lambda\left(\mathrm{1}+{t}\right)\sqrt{\frac{\mathrm{2}}{{t}}} \\ $$$${z}=\lambda\left(\mathrm{1}āˆ’{t}\right)\sqrt{\frac{\mathrm{2}}{{t}}} \\ $$$${x}^{\mathrm{2}} āˆ’{yz}=\lambda^{\mathrm{2}} \\ $$$$\lambda^{\mathrm{2}} \frac{\mathrm{2}}{{t}}āˆ’\lambda^{\mathrm{2}} \left(\mathrm{1}āˆ’{t}^{\mathrm{2}} \right)\frac{\mathrm{2}}{{t}}=\lambda^{\mathrm{2}} \\ $$$$\frac{\mathrm{2}}{{t}}āˆ’\left(\mathrm{1}āˆ’{t}^{\mathrm{2}} \right)\frac{\mathrm{2}}{{t}}=\mathrm{1} \\ $$$$\mathrm{2}{t}=\mathrm{1} \\ $$$${t}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$${x}=\mathrm{2}\lambda,\:\:\:{y}=\mathrm{3}\lambda,\:\:\:{z}=\lambda \\ $$
Commented by hardmath last updated on 09/Apr/25
thank you dear professor
$$\mathrm{thank}\:\mathrm{you}\:\mathrm{dear}\:\mathrm{professor} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *