Menu Close

Question-218366




Question Number 218366 by Mingma last updated on 08/Apr/25
Commented by Mingma last updated on 08/Apr/25
Find the dimensions
Commented by zetamaths last updated on 08/Apr/25
the dimension is 2  ⇔dim(W)=2 because    a+b+c=0  a=−b−c    Or (a;b;c)  (−b−c;b;c)⇔(−b;b;0)+(−c;0;c)  b(−1;1;0)+c(−1;0;1)  W=Vect_K ((−1;1;0);(−1;0;1))=<(−1;1;0);(−1;0;1)>_K   finaly  ⇔dim(W)=2
$${the}\:{dimension}\:{is}\:\mathrm{2}\:\:\Leftrightarrow{dim}\left({W}\right)=\mathrm{2}\:{because} \\ $$$$ \\ $$$${a}+{b}+{c}=\mathrm{0} \\ $$$${a}=−{b}−{c}\:\: \\ $$$${Or}\:\left({a};{b};{c}\right) \\ $$$$\left(−{b}−{c};{b};{c}\right)\Leftrightarrow\left(−{b};{b};\mathrm{0}\right)+\left(−{c};\mathrm{0};{c}\right) \\ $$$${b}\left(−\mathrm{1};\mathrm{1};\mathrm{0}\right)+{c}\left(−\mathrm{1};\mathrm{0};\mathrm{1}\right) \\ $$$${W}={Vect}_{\mathbb{K}} \left(\left(−\mathrm{1};\mathrm{1};\mathrm{0}\right);\left(−\mathrm{1};\mathrm{0};\mathrm{1}\right)\right)=<\left(−\mathrm{1};\mathrm{1};\mathrm{0}\right);\left(−\mathrm{1};\mathrm{0};\mathrm{1}\right)>_{\mathbb{K}} \\ $$$${finaly} \\ $$$$\Leftrightarrow{dim}\left({W}\right)=\mathrm{2} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *