Menu Close

Question-218494




Question Number 218494 by Spillover last updated on 10/Apr/25
Answered by vnm last updated on 10/Apr/25
(R/( (√(R^2 +(2R)^2 ))))=(r/( (√(R^2 +(2R)^2 ))−(R+r)))  (1/( (√5)))=(r/( R(√5)−R−r))=((r/R)/( (√5)−1−r/R))  (√5)=(((√5)−1)/(r/R))−1  (r/R)=(((√5)−1)/( (√5)+1))=((6−2(√5))/4)=((3−(√5))/2)  A=(1/2)(2R)^2 tan((π/2)−2tan^(−1) (1/2))=  ((2R^2 )/(tan(2tan^(−1) (1/2))))=((3R^2 )/2)
$$\frac{{R}}{\:\sqrt{{R}^{\mathrm{2}} +\left(\mathrm{2}{R}\right)^{\mathrm{2}} }}=\frac{{r}}{\:\sqrt{{R}^{\mathrm{2}} +\left(\mathrm{2}{R}\right)^{\mathrm{2}} }−\left({R}+{r}\right)} \\ $$$$\frac{\mathrm{1}}{\:\sqrt{\mathrm{5}}}=\frac{{r}}{\:{R}\sqrt{\mathrm{5}}−{R}−{r}}=\frac{{r}/{R}}{\:\sqrt{\mathrm{5}}−\mathrm{1}−{r}/{R}} \\ $$$$\sqrt{\mathrm{5}}=\frac{\sqrt{\mathrm{5}}−\mathrm{1}}{{r}/{R}}−\mathrm{1} \\ $$$$\frac{{r}}{{R}}=\frac{\sqrt{\mathrm{5}}−\mathrm{1}}{\:\sqrt{\mathrm{5}}+\mathrm{1}}=\frac{\mathrm{6}−\mathrm{2}\sqrt{\mathrm{5}}}{\mathrm{4}}=\frac{\mathrm{3}−\sqrt{\mathrm{5}}}{\mathrm{2}} \\ $$$${A}=\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{2}{R}\right)^{\mathrm{2}} \mathrm{tan}\left(\frac{\pi}{\mathrm{2}}−\mathrm{2tan}^{−\mathrm{1}} \frac{\mathrm{1}}{\mathrm{2}}\right)= \\ $$$$\frac{\mathrm{2}{R}^{\mathrm{2}} }{\mathrm{tan}\left(\mathrm{2tan}^{−\mathrm{1}} \frac{\mathrm{1}}{\mathrm{2}}\right)}=\frac{\mathrm{3}{R}^{\mathrm{2}} }{\mathrm{2}} \\ $$$$ \\ $$
Commented by Spillover last updated on 11/Apr/25
correct
$${correct} \\ $$
Answered by mr W last updated on 10/Apr/25
Commented by mr W last updated on 10/Apr/25
((R−r)/( (√((R+r)^2 −(R−r)^2 ))))=(R/(2R))  (((R−r)^2 )/( 4Rr))=(1/4)  r^2 −3Rr+R^2 =0  ⇒(r/R)=((3−(√(3^2 −4)))/2)=((3−(√5))/2) ✓
$$\frac{{R}−{r}}{\:\sqrt{\left({R}+{r}\right)^{\mathrm{2}} −\left({R}−{r}\right)^{\mathrm{2}} }}=\frac{{R}}{\mathrm{2}{R}} \\ $$$$\frac{\left({R}−{r}\right)^{\mathrm{2}} }{\:\mathrm{4}{Rr}}=\frac{\mathrm{1}}{\mathrm{4}} \\ $$$${r}^{\mathrm{2}} −\mathrm{3}{Rr}+{R}^{\mathrm{2}} =\mathrm{0} \\ $$$$\Rightarrow\frac{{r}}{{R}}=\frac{\mathrm{3}−\sqrt{\mathrm{3}^{\mathrm{2}} −\mathrm{4}}}{\mathrm{2}}=\frac{\mathrm{3}−\sqrt{\mathrm{5}}}{\mathrm{2}}\:\checkmark \\ $$
Answered by Spillover last updated on 11/Apr/25
Answered by Spillover last updated on 11/Apr/25

Leave a Reply

Your email address will not be published. Required fields are marked *