Menu Close

Prove-that-for-all-real-numbers-a-and-b-with-a-lt-b-the-following-inequality-holds-a-b-1-dx-3-b-a-a-b-x-a-1-2-dx-a-b-1-a-x-1-3-dx-




Question Number 218626 by Nicholas666 last updated on 13/Apr/25
   Prove that for all real numbers a and b  with a<b, the following inequality holds;  (∫_a ^b 1 dx)^3 ≤ (b−a)(∫_a ^b (x−a+1)^2 dx)(∫_(a ) ^b (1/((a−x+1)^3 ))dx)
$$ \\ $$$$\:{Prove}\:{that}\:{for}\:{all}\:{real}\:{numbers}\:{a}\:{and}\:{b} \\ $$$${with}\:{a}<{b},\:{the}\:{following}\:{inequality}\:{holds}; \\ $$$$\left(\int_{{a}} ^{{b}} \mathrm{1}\:{dx}\right)^{\mathrm{3}} \leqslant\:\left({b}−{a}\right)\left(\int_{{a}} ^{{b}} \left({x}−{a}+\mathrm{1}\right)^{\mathrm{2}} {dx}\right)\left(\int_{{a}\:} ^{{b}} \frac{\mathrm{1}}{\left({a}−{x}+\mathrm{1}\right)^{\mathrm{3}} }{dx}\right) \\ $$$$ \\ $$
Commented by Nicholas666 last updated on 14/Apr/25
for those of you who marked the   problem I posted inRed it′s because   You didn′t break down the math with   in depth analysis.
$${for}\:{those}\:{of}\:{you}\:{who}\:{marked}\:{the}\: \\ $$$${problem}\:{I}\:{posted}\:{inRed}\:{it}'{s}\:{because}\: \\ $$$${You}\:{didn}'{t}\:{break}\:{down}\:{the}\:{math}\:{with}\: \\ $$$${in}\:{depth}\:{analysis}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *