Menu Close

Question-218775




Question Number 218775 by sonukgindia last updated on 15/Apr/25
Answered by SdC355 last updated on 15/Apr/25
(√(x+22))∈Z  1^(1/3)  , 8^(1/3)  , 27^(1/3)  , 64^(1/3) ...etc  x=−21 , −14 , 5 , ....  −(21)^3 −6(−21)^2 −12∙21−32≠1  −(14)^3 −6(−14)^2 −14∙12−32≠2  5^3 −6∙5^2 +12∙5−32=3  ∴ x=5
$$\sqrt{{x}+\mathrm{22}}\in\mathbb{Z} \\ $$$$\mathrm{1}^{\mathrm{1}/\mathrm{3}} \:,\:\mathrm{8}^{\mathrm{1}/\mathrm{3}} \:,\:\mathrm{27}^{\mathrm{1}/\mathrm{3}} \:,\:\mathrm{64}^{\mathrm{1}/\mathrm{3}} …\mathrm{etc} \\ $$$${x}=−\mathrm{21}\:,\:−\mathrm{14}\:,\:\mathrm{5}\:,\:…. \\ $$$$−\left(\mathrm{21}\right)^{\mathrm{3}} −\mathrm{6}\left(−\mathrm{21}\right)^{\mathrm{2}} −\mathrm{12}\centerdot\mathrm{21}−\mathrm{32}\neq\mathrm{1} \\ $$$$−\left(\mathrm{14}\right)^{\mathrm{3}} −\mathrm{6}\left(−\mathrm{14}\right)^{\mathrm{2}} −\mathrm{14}\centerdot\mathrm{12}−\mathrm{32}\neq\mathrm{2} \\ $$$$\mathrm{5}^{\mathrm{3}} −\mathrm{6}\centerdot\mathrm{5}^{\mathrm{2}} +\mathrm{12}\centerdot\mathrm{5}−\mathrm{32}=\mathrm{3} \\ $$$$\therefore\:{x}=\mathrm{5} \\ $$
Commented by SdC355 last updated on 15/Apr/25
other solution  (z+22)=(z^3 −6z^2 +12z−32)^3   and Solve about z
$$\mathrm{other}\:\mathrm{solution} \\ $$$$\left({z}+\mathrm{22}\right)=\left({z}^{\mathrm{3}} −\mathrm{6}{z}^{\mathrm{2}} +\mathrm{12}{z}−\mathrm{32}\right)^{\mathrm{3}} \\ $$$$\mathrm{and}\:\mathrm{Solve}\:\mathrm{about}\:{z} \\ $$
Answered by Hanuda354 last updated on 15/Apr/25

Leave a Reply

Your email address will not be published. Required fields are marked *