Question Number 218775 by sonukgindia last updated on 15/Apr/25

Answered by SdC355 last updated on 15/Apr/25

$$\sqrt{{x}+\mathrm{22}}\in\mathbb{Z} \\ $$$$\mathrm{1}^{\mathrm{1}/\mathrm{3}} \:,\:\mathrm{8}^{\mathrm{1}/\mathrm{3}} \:,\:\mathrm{27}^{\mathrm{1}/\mathrm{3}} \:,\:\mathrm{64}^{\mathrm{1}/\mathrm{3}} …\mathrm{etc} \\ $$$${x}=−\mathrm{21}\:,\:−\mathrm{14}\:,\:\mathrm{5}\:,\:…. \\ $$$$−\left(\mathrm{21}\right)^{\mathrm{3}} −\mathrm{6}\left(−\mathrm{21}\right)^{\mathrm{2}} −\mathrm{12}\centerdot\mathrm{21}−\mathrm{32}\neq\mathrm{1} \\ $$$$−\left(\mathrm{14}\right)^{\mathrm{3}} −\mathrm{6}\left(−\mathrm{14}\right)^{\mathrm{2}} −\mathrm{14}\centerdot\mathrm{12}−\mathrm{32}\neq\mathrm{2} \\ $$$$\mathrm{5}^{\mathrm{3}} −\mathrm{6}\centerdot\mathrm{5}^{\mathrm{2}} +\mathrm{12}\centerdot\mathrm{5}−\mathrm{32}=\mathrm{3} \\ $$$$\therefore\:{x}=\mathrm{5} \\ $$
Commented by SdC355 last updated on 15/Apr/25

$$\mathrm{other}\:\mathrm{solution} \\ $$$$\left({z}+\mathrm{22}\right)=\left({z}^{\mathrm{3}} −\mathrm{6}{z}^{\mathrm{2}} +\mathrm{12}{z}−\mathrm{32}\right)^{\mathrm{3}} \\ $$$$\mathrm{and}\:\mathrm{Solve}\:\mathrm{about}\:{z} \\ $$
Answered by Hanuda354 last updated on 15/Apr/25
