Menu Close

Question-218952




Question Number 218952 by Spillover last updated on 17/Apr/25
Commented by MathematicalUser2357 last updated on 17/Apr/25
What kind of function is Ti_2 ??? Can someone help me before I eat that question???
$$\mathrm{What}\:\mathrm{kind}\:\mathrm{of}\:\mathrm{function}\:\mathrm{is}\:\mathrm{Ti}_{\mathrm{2}} ???\:\mathrm{Can}\:\mathrm{someone}\:\mathrm{help}\:\mathrm{me}\:\mathrm{before}\:\mathrm{I}\:\mathrm{eat}\:\mathrm{that}\:\mathrm{question}??? \\ $$
Commented by SdC355 last updated on 17/Apr/25
Ti_2 (z)=∫_0 ^( z)    ((tan^(−1) (w))/w) dw......
$$\mathrm{Ti}_{\mathrm{2}} \left({z}\right)=\int_{\mathrm{0}} ^{\:{z}} \:\:\:\frac{\mathrm{tan}^{−\mathrm{1}} \left({w}\right)}{{w}}\:\mathrm{d}{w}…… \\ $$
Commented by Spillover last updated on 17/Apr/25
ans=(π^3 /(32))
$${ans}=\frac{\pi^{\mathrm{3}} }{\mathrm{32}} \\ $$
Commented by Nicholas666 last updated on 17/Apr/25
https://www.quora.com/profile/Bekicot-5/How-do-I-evalute-the-Integral-math-int_-0-1-text-Ti-2-1-x-prod_-k-0-infty-left-sum_-n-0-N-1-x-nN-k?ch=10&oid=219754310&share=e4b5b3f9&srid=5Xg5SU&target_type=post
Commented by Spillover last updated on 18/Apr/25
thanks
$${thanks} \\ $$
Commented by Spillover last updated on 18/Apr/25
Commented by Spillover last updated on 18/Apr/25
Answered by Spillover last updated on 18/Apr/25
Answered by Spillover last updated on 18/Apr/25
Answered by Spillover last updated on 18/Apr/25
Answered by Spillover last updated on 18/Apr/25

Leave a Reply

Your email address will not be published. Required fields are marked *