Menu Close

0-sin-n-n-m-dn-pi-m-2-m-0-m-2-1-n-2-m-1-m-Proof-this-formula-




Question Number 219077 by zetamaths last updated on 19/Apr/25
∫_0 ^(+∞) (((sin(n))/n))^m dn=π∙(m/2^m )∙Σ_(φ=0) ^(m/2) (−1)^∅ ∙(((n−2φ)^(m−1) )/((m−φ)!∙φ!))              Proof this formula
$$\int_{\mathrm{0}} ^{+\infty} \left(\frac{{sin}\left({n}\right)}{{n}}\right)^{{m}} {dn}=\pi\centerdot\frac{{m}}{\mathrm{2}^{{m}} }\centerdot\underset{\phi=\mathrm{0}} {\overset{{m}/\mathrm{2}} {\sum}}\left(−\mathrm{1}\right)^{\emptyset} \centerdot\frac{\left({n}−\mathrm{2}\phi\right)^{{m}−\mathrm{1}} }{\left({m}−\phi\right)!\centerdot\phi!}\:\:\:\:\:\:\:\:\:\:\:\:\:\:{Proof}\:{this}\:{formula} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *