Menu Close

Prove-it-In-triangle-ABC-AB-c-BC-b-AC-a-ab-2-c-abc-2-a-2-bc-tan-A-2-2S-3-a-b-2-c-2-




Question Number 219112 by hardmath last updated on 19/Apr/25
Prove it:  In triangle ABC, AB=c, BC=b, AC=a  ab^2 c + abc^2 −a^2 bc ≥ tan (A/2) ((2S^3 )/((a+b)^2 −c^2 ))
$$\mathrm{Prove}\:\mathrm{it}: \\ $$$$\mathrm{In}\:\mathrm{triangle}\:\mathrm{ABC},\:\mathrm{AB}=\mathrm{c},\:\mathrm{BC}=\mathrm{b},\:\mathrm{AC}=\mathrm{a} \\ $$$$\mathrm{ab}^{\mathrm{2}} \mathrm{c}\:+\:\mathrm{abc}^{\mathrm{2}} −\mathrm{a}^{\mathrm{2}} \mathrm{bc}\:\geqslant\:\mathrm{tan}\:\frac{\mathrm{A}}{\mathrm{2}}\:\frac{\mathrm{2S}^{\mathrm{3}} }{\left(\mathrm{a}+\mathrm{b}\right)^{\mathrm{2}} −\mathrm{c}^{\mathrm{2}} } \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *