Menu Close

Question-219211




Question Number 219211 by Jubr last updated on 20/Apr/25
Answered by Nicholas666 last updated on 20/Apr/25
•the magnitude of the Resultant force is 3N,            •the resultant force acts;  located  28cm from B,   on the extension of the line AB on the side of B
$$\bullet{the}\:{magnitude}\:{of}\:{the}\:{Resultant}\:{force}\:{is}\:\mathrm{3}{N},\:\:\:\:\:\:\:\: \\ $$$$ \\ $$$$\bullet{the}\:{resultant}\:{force}\:{acts}; \\ $$$${located}\:\:\mathrm{28}{cm}\:{from}\:{B}, \\ $$$$\:{on}\:{the}\:{extension}\:{of}\:{the}\:{line}\:{AB}\:{on}\:{the}\:{side}\:{of}\:{B}\: \\ $$$$ \\ $$
Commented by Nicholas666 last updated on 20/Apr/25
Commented by Nicholas666 last updated on 20/Apr/25
Commented by Nicholas666 last updated on 20/Apr/25
Answered by mr W last updated on 20/Apr/25
Commented by mr W last updated on 20/Apr/25
R=ΣF=10−7=3 N  R×AC=ΣM_A =−7×0+10×12=120 Ncm  ⇒AC=((120)/3)=40 cm  ⇒BC=40−12=28 cm
$${R}=\Sigma{F}=\mathrm{10}−\mathrm{7}=\mathrm{3}\:{N} \\ $$$${R}×{AC}=\Sigma{M}_{{A}} =−\mathrm{7}×\mathrm{0}+\mathrm{10}×\mathrm{12}=\mathrm{120}\:{Ncm} \\ $$$$\Rightarrow{AC}=\frac{\mathrm{120}}{\mathrm{3}}=\mathrm{40}\:{cm} \\ $$$$\Rightarrow{BC}=\mathrm{40}−\mathrm{12}=\mathrm{28}\:{cm} \\ $$
Commented by Jubr last updated on 20/May/25
Thanks sir
$${Thanks}\:{sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *