Menu Close

Question-219279




Question Number 219279 by Mingma last updated on 22/Apr/25
Answered by som(math1967) last updated on 22/Apr/25
 ((2sin((β+α)/2)cos((α−β)/2))/(2sin ((α+β)/2)sin((α−β)/2)))=(√3)  ⇒ cot((α−β)/2)=cot(π/6)  ⇒  α−β=(π/3)   sin 3α+sin β  =2sin ((3(α+β))/2)×cos ((3(α−β))/2)  =2sin ((3(α+β))/2)×cos(π/2)  =0
$$\:\frac{\mathrm{2}{sin}\frac{\beta+\alpha}{\mathrm{2}}{cos}\frac{\alpha−\beta}{\mathrm{2}}}{\mathrm{2sin}\:\frac{\alpha+\beta}{\mathrm{2}}{sin}\frac{\alpha−\beta}{\mathrm{2}}}=\sqrt{\mathrm{3}} \\ $$$$\Rightarrow\:{cot}\frac{\alpha−\beta}{\mathrm{2}}={cot}\frac{\pi}{\mathrm{6}} \\ $$$$\Rightarrow\:\:\alpha−\beta=\frac{\pi}{\mathrm{3}} \\ $$$$\:\mathrm{sin}\:\mathrm{3}\alpha+\mathrm{sin}\:\beta \\ $$$$=\mathrm{2sin}\:\frac{\mathrm{3}\left(\alpha+\beta\right)}{\mathrm{2}}×\mathrm{cos}\:\frac{\mathrm{3}\left(\alpha−\beta\right)}{\mathrm{2}} \\ $$$$=\mathrm{2sin}\:\frac{\mathrm{3}\left(\alpha+\beta\right)}{\mathrm{2}}×{cos}\frac{\pi}{\mathrm{2}} \\ $$$$=\mathrm{0} \\ $$
Answered by Nicholas666 last updated on 22/Apr/25
  ((2sin(((α+β)/2))cos(((α−β)/2)))/(2sin(((α+β)/2))sin(((α−β)/2)))) =(√3)  cot(((α−β)/2))=(√3) ⇒((α−β)/2) = (π/6)+kπ    α−β=(π/3)+2kπ    sin (3α)+sin(3β)=2sin(((3(α+β))/2))cos(((3(α−β))/2))       sin(3α)+sin(3β)=2sin(((3(α+β))/2))cos(((3((π/3)+2kπ))/2))       sin(3α)+sin(3β)=2sin(((3(α+β))/2))cos((π/2)+kπ)     cos  ((π/2)+3kπ)=0      sin(3α)+sin(3β)=2sin(((3(α+β))/2)×0=0  final ans;  sin(3α) + sin(3β) = 0
$$\:\:\frac{\mathrm{2}{sin}\left(\frac{\alpha+\beta}{\mathrm{2}}\right){cos}\left(\frac{\alpha−\beta}{\mathrm{2}}\right)}{\mathrm{2}{sin}\left(\frac{\alpha+\beta}{\mathrm{2}}\right){sin}\left(\frac{\alpha−\beta}{\mathrm{2}}\right)}\:=\sqrt{\mathrm{3}} \\ $$$${cot}\left(\frac{\alpha−\beta}{\mathrm{2}}\right)=\sqrt{\mathrm{3}}\:\Rightarrow\frac{\alpha−\beta}{\mathrm{2}}\:=\:\frac{\pi}{\mathrm{6}}+{k}\pi \\ $$$$\:\:\alpha−\beta=\frac{\pi}{\mathrm{3}}+\mathrm{2}{k}\pi \\ $$$$\:\:{sin}\:\left(\mathrm{3}\alpha\right)+{sin}\left(\mathrm{3}\beta\right)=\mathrm{2}{sin}\left(\frac{\mathrm{3}\left(\alpha+\beta\right)}{\mathrm{2}}\right){cos}\left(\frac{\mathrm{3}\left(\alpha−\beta\right)}{\mathrm{2}}\right)\:\:\: \\ $$$$\:\:{sin}\left(\mathrm{3}\alpha\right)+{sin}\left(\mathrm{3}\beta\right)=\mathrm{2}{sin}\left(\frac{\mathrm{3}\left(\alpha+\beta\right)}{\mathrm{2}}\right){cos}\left(\frac{\mathrm{3}\left(\frac{\pi}{\mathrm{3}}+\mathrm{2}{k}\pi\right)}{\mathrm{2}}\right)\:\:\: \\ $$$$\:\:{sin}\left(\mathrm{3}\alpha\right)+{sin}\left(\mathrm{3}\beta\right)=\mathrm{2}{sin}\left(\frac{\mathrm{3}\left(\alpha+\beta\right)}{\mathrm{2}}\right){cos}\left(\frac{\pi}{\mathrm{2}}+{k}\pi\right) \\ $$$$\:\:\:{cos}\:\:\left(\frac{\pi}{\mathrm{2}}+\mathrm{3}{k}\pi\right)=\mathrm{0} \\ $$$$\:\:\:\:{sin}\left(\mathrm{3}\alpha\right)+{sin}\left(\mathrm{3}\beta\right)=\mathrm{2}{sin}\left(\frac{\mathrm{3}\left(\alpha+\beta\right)}{\mathrm{2}}×\mathrm{0}=\mathrm{0}\right. \\ $$$${final}\:{ans};\:\:{sin}\left(\mathrm{3}\alpha\right)\:+\:{sin}\left(\mathrm{3}\beta\right)\:=\:\mathrm{0} \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *