Menu Close

0-K-0-z-e-kz-dz-K-z-is-modified-Bessel-function-




Question Number 219347 by SdC355 last updated on 23/Apr/25
∫_0 ^( ∞)  K_0 (z)e^(−kz) dz=???  K_ν (z) is modified Bessel function
$$\int_{\mathrm{0}} ^{\:\infty} \:{K}_{\mathrm{0}} \left({z}\right){e}^{−{kz}} \mathrm{d}{z}=??? \\ $$$${K}_{\nu} \left({z}\right)\:\mathrm{is}\:\mathrm{modified}\:\mathrm{Bessel}\:\mathrm{function} \\ $$
Answered by Nicholas666 last updated on 23/Apr/25
 { (((2/( (√(1−k^2 )))) arctan((√((1−k)/(1+k)))) ,0<k<1)),((1,                                                 k=1)),(((1/( (√(k^2 −1)))) ln (((1+k+(√(k^2 −1)))/(1+k−(√(k^2 −1)))) ),k>1)) :}
$$\begin{cases}{\frac{\mathrm{2}}{\:\sqrt{\mathrm{1}−{k}^{\mathrm{2}} }}\:{arctan}\left(\sqrt{\frac{\mathrm{1}−{k}}{\mathrm{1}+{k}}}\right)\:,\mathrm{0}<{k}<\mathrm{1}}\\{\mathrm{1},\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{k}=\mathrm{1}}\\{\frac{\mathrm{1}}{\:\sqrt{{k}^{\mathrm{2}} −\mathrm{1}}}\:{ln}\:\left(\frac{\mathrm{1}+{k}+\sqrt{{k}^{\mathrm{2}} −\mathrm{1}}}{\mathrm{1}+{k}−\sqrt{{k}^{\mathrm{2}} −\mathrm{1}}}\:\right),{k}>\mathrm{1}}\end{cases} \\ $$$$ \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *