Menu Close

F-x-y-z-xye-1-yze-2-xye-3-S-u-v-2-v-cos-u-sin-2piv-v-cos-u-2-v-cos-u-cos-2piv-2v-2-u-pi-pi-v-0-pi-2-S-F-dS-




Question Number 219333 by SdC355 last updated on 23/Apr/25
F^→ (x,y,z)=−xye_1 ^→ +yze_2 ^→ −xye_3 ^→   S^→ (u,v) { (((2+v∙cos(u))sin(2πv))),((v∙cos(u))),(((2+v∙cos(u))cos(2πv)+2v−2)) :}  u∈[−π,π] , v∈[0,(π/2)]  ∫∫_( S)  F^→ ∙dS^→ =??
$$\overset{\rightarrow} {\boldsymbol{\mathrm{F}}}\left({x},{y},{z}\right)=−{xy}\overset{\rightarrow} {\boldsymbol{\mathrm{e}}}_{\mathrm{1}} +{yz}\overset{\rightarrow} {\boldsymbol{\mathrm{e}}}_{\mathrm{2}} −{xy}\overset{\rightarrow} {\boldsymbol{\mathrm{e}}}_{\mathrm{3}} \\ $$$$\overset{\rightarrow} {\boldsymbol{\mathcal{S}}}\left({u},{v}\right)\begin{cases}{\left(\mathrm{2}+{v}\centerdot\mathrm{cos}\left({u}\right)\right)\mathrm{sin}\left(\mathrm{2}\pi{v}\right)}\\{{v}\centerdot\mathrm{cos}\left({u}\right)}\\{\left(\mathrm{2}+{v}\centerdot\mathrm{cos}\left({u}\right)\right)\mathrm{cos}\left(\mathrm{2}\pi{v}\right)+\mathrm{2}{v}−\mathrm{2}}\end{cases} \\ $$$${u}\in\left[−\pi,\pi\right]\:,\:{v}\in\left[\mathrm{0},\frac{\pi}{\mathrm{2}}\right] \\ $$$$\int\int_{\:\boldsymbol{\mathcal{S}}} \:\overset{\rightarrow} {\boldsymbol{\mathrm{F}}}\centerdot\mathrm{d}\overset{\rightarrow} {\boldsymbol{\mathcal{S}}}=?? \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *