Question Number 219318 by ea last updated on 23/Apr/25

Answered by mr W last updated on 23/Apr/25

Commented by ea last updated on 23/Apr/25
Sir, this is perfect, but I will appreciate if you can provide detailed explanation! showing some workings would be appreciated!
Commented by mr W last updated on 23/Apr/25

$$\frac{{BD}}{{AB}}=\frac{{CE}}{{AC}}={r}=\mathrm{tan}\:\theta,\:{say} \\ $$$$\Rightarrow\frac{{AD}}{{AB}}=\frac{\mathrm{1}}{\mathrm{cos}\:\theta}=\frac{{AE}}{{AC}} \\ $$$$\angle{DAE}=\angle{BAC} \\ $$$$\Rightarrow\Delta{DAE}\sim\Delta{BAC} \\ $$$${say}\:{P}\:{is}\:{midpoint}\:{of}\:{DE}. \\ $$$$\frac{{AP}}{{AM}}=\frac{{AD}}{{AB}}=\frac{\mathrm{1}}{\mathrm{cos}\:\theta} \\ $$$$\Rightarrow{AP}=\frac{{AM}}{\mathrm{cos}\:\theta} \\ $$$${that}\:{means}\:{the}\:{locus}\:{of}\:{P}\:{is}\:{a}\: \\ $$$${perpendicular}\:{to}\:{AM}\:{with}\:{M}\:{being} \\ $$$${the}\:{midpoint}\:{of}\:{BC}. \\ $$
Commented by mr W last updated on 23/Apr/25

$${after}\:{i}\:{have}\:{posted}\:{a}\:{diagram},\:{i}\:{need} \\ $$$${some}\:{time}\:{to}\:{write}\:{down}\:{my} \\ $$$${solution}.\:{this}\:{can}\:{take}\:{some}\:{time}! \\ $$$${so}\:{you}\:{don}'{t}\:{need}\:{to}\:{give}\:{your} \\ $$$${comment}\:{or}\:{ask}\:{for}\:{more}\: \\ $$$${explanation}\:{as}\:{soon}\:{as}\:{you}\:{see}\:{a} \\ $$$${diagram}.\:{perhaps}\:{at}\:{this}\:{time}\:{i}\: \\ $$$${was}\:{just}\:{writing}\:{down}\:{my}\:{solution}\: \\ $$$${or}\:{the}\:{explanation}\:{you}\:{want}.\: \\ $$$${please}\:{have}\:{a}\:{little}\:{more}\:{petience}! \\ $$$${thanks}! \\ $$
Commented by ea last updated on 23/Apr/25
Well noted, Prof!
Commented by ea last updated on 12/May/25
Sir, your solution is correct only if you can show that Triangle AMP and Triangle ABD are similar. Can you please show that? Thank you.
Commented by mr W last updated on 13/May/25

Commented by ea last updated on 15/May/25
Prof, the picture does not clear my doubt. So your cos theta argument is true only if AM and MC is perpendicular.
The ratio between 2 sides can give you any value. It is meaningful as cos only if you can show it is a right triangle.
Commented by mr W last updated on 15/May/25

$${the}\:{picture}\:{above}\:{is}\:{a}\:{physical} \\ $$$${interpretation}:\:{a}\:{soild}\:{object}\:\Delta{ABC} \\ $$$${rotates}\:{about}\:{point}\:{A}. \\ $$$${but}\:{it}\:{seems}\:{not}\:{to}\:{be}\:{obvious}\:{to}\:{you}, \\ $$$${no}\:{problem}.\:{we}\:{can}\:{also}\:{treat}\:{this}\: \\ $$$${using}\:{vectors}.\:{but}\:{i}\:{think}\:{you}\:{seem}\: \\ $$$${to}\:{need}\:{a}\:{direct}\:{proof}\:{using}\:{basic}\: \\ $$$${geometry}.\:{i}\:{have}\:{provided}\:{such}\:{a}\: \\ $$$${proof}\:{in}\:{Q}\mathrm{220546}.\:{i}\:{hope}\:{this}\:{can}\: \\ $$$${convince}\:{you}. \\ $$
Commented by mr W last updated on 15/May/25

$${vector}\:{method}: \\ $$
Commented by mr W last updated on 15/May/25

Commented by mr W last updated on 16/May/25

$$\overset{\rightarrow} {\boldsymbol{{m}}}=\left(\mathrm{1}−\mu\right)\overset{\rightarrow} {\boldsymbol{{b}}}+\mu\overset{\rightarrow} {\boldsymbol{{c}}} \\ $$$${proof}\:{see}\:{below}. \\ $$
Commented by ea last updated on 15/May/25
Perfect, Prof!
Commented by mr W last updated on 16/May/25

Commented by mr W last updated on 16/May/25
![OM^(→) =r=p+μ(q−p)=(1−μ)p+μq B′C′^(→) =q+c−(p+b) OM′^(→) =p+b−μ[q+c−(p+b)] =(1−μ)(p+b)+μ(q+c) m=OM^(→) ′−OM^(→) =(1−μ)(p+b)+μ(q+c)−(1−μ)p+μq =(1−μ)b+μc](https://www.tinkutara.com/question/Q220603.png)
$$\overset{\rightarrow} {{OM}}=\boldsymbol{{r}}=\boldsymbol{{p}}+\mu\left(\boldsymbol{{q}}−\boldsymbol{{p}}\right)=\left(\mathrm{1}−\mu\right)\boldsymbol{{p}}+\mu\boldsymbol{{q}} \\ $$$$\overset{\rightarrow} {{B}'{C}'}=\boldsymbol{{q}}+\boldsymbol{{c}}−\left(\boldsymbol{{p}}+\boldsymbol{{b}}\right) \\ $$$$\overset{\rightarrow} {{OM}'}=\boldsymbol{{p}}+\boldsymbol{{b}}−\mu\left[\boldsymbol{{q}}+\boldsymbol{{c}}−\left(\boldsymbol{{p}}+\boldsymbol{{b}}\right)\right] \\ $$$$\:\:\:\:\:\:\:\:\:\:=\left(\mathrm{1}−\mu\right)\left(\boldsymbol{{p}}+\boldsymbol{{b}}\right)+\mu\left(\boldsymbol{{q}}+\boldsymbol{{c}}\right) \\ $$$$\boldsymbol{{m}}=\overset{\rightarrow} {{OM}}'−\overset{\rightarrow} {{OM}}=\left(\mathrm{1}−\mu\right)\left(\boldsymbol{{p}}+\boldsymbol{{b}}\right)+\mu\left(\boldsymbol{{q}}+\boldsymbol{{c}}\right)−\left(\mathrm{1}−\mu\right)\boldsymbol{{p}}+\mu\boldsymbol{{q}} \\ $$$$\:\:\:\:\:=\left(\mathrm{1}−\mu\right)\boldsymbol{{b}}+\mu\boldsymbol{{c}} \\ $$