Menu Close

given-g-x-x-2023-x-1-find-gogogogogog-2024-




Question Number 219404 by golsendro last updated on 24/Apr/25
  given g(x)= ((x−2023)/(x−1))    find (gogogogogog)(2024)
$$\:\:\mathrm{given}\:\mathrm{g}\left(\mathrm{x}\right)=\:\frac{\mathrm{x}−\mathrm{2023}}{\mathrm{x}−\mathrm{1}} \\ $$$$\:\:\mathrm{find}\:\left(\mathrm{gogogogogog}\right)\left(\mathrm{2024}\right) \\ $$
Commented by kapoorshah last updated on 25/Apr/25
g^(−1) (x)=((x−2023)/(x−1))       (g o g o g o g o g o g)(2024)  = (g o g^(−1)  o g o g^(−1)  o g o g^(−1) )(2024)  = 2024
$${g}^{−\mathrm{1}} \left({x}\right)=\frac{{x}−\mathrm{2023}}{{x}−\mathrm{1}} \\ $$$$\:\:\:\:\:\left({g}\:{o}\:{g}\:{o}\:{g}\:{o}\:{g}\:{o}\:{g}\:{o}\:{g}\right)\left(\mathrm{2024}\right) \\ $$$$=\:\left({g}\:{o}\:{g}^{−\mathrm{1}} \:{o}\:{g}\:{o}\:{g}^{−\mathrm{1}} \:{o}\:{g}\:{o}\:{g}^{−\mathrm{1}} \right)\left(\mathrm{2024}\right) \\ $$$$=\:\mathrm{2024} \\ $$$$ \\ $$$$ \\ $$
Commented by kapoorshah last updated on 25/Apr/25
(g o g^(−1) )(a) = a
$$\left({g}\:{o}\:{g}^{−\mathrm{1}} \right)\left({a}\right)\:=\:{a} \\ $$
Answered by y0o0o last updated on 24/Apr/25
Answered by mehdee7396 last updated on 26/Apr/25
  f(x)=((x−a)/(x−1))⇒f(f(x))=((((x−a)/(x−1))−a)/(((x−a)/(x−1))−1))  =((x−a−ax+a)/(x−a−x+1))=(((1−a)x)/(1−a))=x    ⇒f^n (x)=f(x)   ; n=2k   &  f^n (x)=x   ; n=2k+1
$$ \\ $$$${f}\left({x}\right)=\frac{{x}−{a}}{{x}−\mathrm{1}}\Rightarrow{f}\left({f}\left({x}\right)\right)=\frac{\frac{{x}−{a}}{{x}−\mathrm{1}}−{a}}{\frac{{x}−{a}}{{x}−\mathrm{1}}−\mathrm{1}} \\ $$$$=\frac{{x}−{a}−{ax}+{a}}{{x}−{a}−{x}+\mathrm{1}}=\frac{\left(\mathrm{1}−{a}\right){x}}{\mathrm{1}−{a}}={x}\:\: \\ $$$$\Rightarrow{f}^{{n}} \left({x}\right)={f}\left({x}\right)\:\:\:;\:{n}=\mathrm{2}{k} \\ $$$$\:\&\:\:{f}^{{n}} \left({x}\right)={x}\:\:\:;\:{n}=\mathrm{2}{k}+\mathrm{1} \\ $$$$ \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *