Menu Close

prove-0-r-2-t-2-e-pt-dt-rpiL-1-rp-pirI-1-up-2irK-1-rp-2p-L-x-is-Modified-Struve-function-I-x-is-Modified-Bessel-function-of-the-First-kind-K-x-is-Modified-Bes




Question Number 219465 by SdC355 last updated on 26/Apr/25
prove  ∫_0 ^( ∞)   (√(r^2 −t^2 ))e^(−pt) dt=((−rπL_1 (rp)+πrI_1 (up)+2irK_1 (rp))/(2p))  L_ν (x) is Modified Struve function  I_ν (x) is Modified Bessel function of the First kind  K_ν (x) is Modified Bessel function of the Second kind
$${prove} \\ $$$$\int_{\mathrm{0}} ^{\:\infty} \:\:\sqrt{{r}^{\mathrm{2}} −{t}^{\mathrm{2}} }{e}^{−{pt}} \mathrm{d}{t}=\frac{−{r}\pi\boldsymbol{\mathrm{L}}_{\mathrm{1}} \left({rp}\right)+\pi{rI}_{\mathrm{1}} \left({up}\right)+\mathrm{2}\boldsymbol{{i}}{rK}_{\mathrm{1}} \left({rp}\right)}{\mathrm{2}{p}} \\ $$$$\boldsymbol{\mathrm{L}}_{\nu} \left({x}\right)\:\mathrm{is}\:\mathrm{Modified}\:\mathrm{Struve}\:\mathrm{function} \\ $$$${I}_{\nu} \left({x}\right)\:\mathrm{is}\:\mathrm{Modified}\:\mathrm{Bessel}\:\mathrm{function}\:\mathrm{of}\:\mathrm{the}\:\mathrm{First}\:\mathrm{kind} \\ $$$${K}_{\nu} \left({x}\right)\:\mathrm{is}\:\mathrm{Modified}\:\mathrm{Bessel}\:\mathrm{function}\:\mathrm{of}\:\mathrm{the}\:\mathrm{Second}\:\mathrm{kind} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *