Menu Close

Find-0-1-x-x-2-dx-




Question Number 219515 by hardmath last updated on 27/Apr/25
Find:   𝛀 = ∫_0 ^( 1)  x^x^2   dx = ?
$$\mathrm{Find}:\:\:\:\boldsymbol{\Omega}\:=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \:\mathrm{x}^{\boldsymbol{\mathrm{x}}^{\mathrm{2}} } \:\mathrm{dx}\:=\:?\: \\ $$
Answered by SdC355 last updated on 27/Apr/25
canβ€²t Find primitive function ∫ βˆ™   but approximatly ∫_0 ^( 1)  βˆ™β‰ˆ0.8964887819296233....
$$\mathrm{can}'\mathrm{t}\:\mathrm{Find}\:\mathrm{primitive}\:\mathrm{function}\:\int\:\centerdot\: \\ $$$$\mathrm{but}\:\mathrm{approximatly}\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \:\centerdot\approx\mathrm{0}.\mathrm{8964887819296233}….\: \\ $$
Answered by vnm last updated on 28/Apr/25
  Ξ©=∫_0 ^1 x^x^2  dx=∫_0 ^1 e^(x^2 ln x) dx=  ∫_0 ^1 Ξ£_(n=0) ^∞ (((x^2 lnx)^n )/(n!))=Ξ£_(n=0) ^∞ ∫_0 ^(1() ((x^2 lnx)^n )/(n!))dx=  Ξ£_(n=0) ^∞ (1/(n!))∫_0 ^1 x^(2n) (lnx)^n dx=Ξ£_(n=0) ^∞ (1/(n!))I_n   I_n =∫_0 ^1 x^(2n) (lnx)^n dx=  [lnx=βˆ’at, a>0, x=e^(βˆ’at) , dx=βˆ’ae^(βˆ’at) dt, t_1 =+∞, t_2 =0]  ∫_(+∞) ^0 (e^(βˆ’at) )^(2n) (βˆ’at)^n (βˆ’ae^(βˆ’at) )dt=  (βˆ’1)^(n+1) a^(n+1) ∫_(+∞) ^0 e^(βˆ’(2n+1)at) t^n dt=  [(2n+1)a=1, a=(1/(2n+1))]  (((βˆ’1)^(n+1) )/((2n+1)^(n+1) ))∫_(+∞) ^0 e^(βˆ’t) t^n dt=(((βˆ’1)^n )/((2n+1)^(n+1) ))∫_0 ^(+∞) e^(βˆ’t) t^n dt=  (((βˆ’1)^n )/((2n+1)^(n+1) ))βˆ™n!  Ξ©=Ξ£_(n=0) ^∞ (1/(n!))βˆ™(((βˆ’1)^n n!)/((2n+1)^(n+1) ))=Ξ£_(n=1) ^∞ (((βˆ’1)^(nβˆ’1) )/((2nβˆ’1)^n ))β‰ˆ0.896488781930
$$ \\ $$$$\Omega=\int_{\mathrm{0}} ^{\mathrm{1}} {x}^{{x}^{\mathrm{2}} } {dx}=\int_{\mathrm{0}} ^{\mathrm{1}} {e}^{{x}^{\mathrm{2}} \mathrm{ln}\:{x}} {dx}= \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left({x}^{\mathrm{2}} \mathrm{ln}{x}\right)^{{n}} }{{n}!}=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\int_{\mathrm{0}} ^{\mathrm{1}\left(\right.} \frac{\left.{x}^{\mathrm{2}} \mathrm{ln}{x}\right)^{{n}} }{{n}!}{dx}= \\ $$$$\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}!}\int_{\mathrm{0}} ^{\mathrm{1}} {x}^{\mathrm{2}{n}} \left(\mathrm{ln}{x}\right)^{{n}} {dx}=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}!}{I}_{{n}} \\ $$$${I}_{{n}} =\int_{\mathrm{0}} ^{\mathrm{1}} {x}^{\mathrm{2}{n}} \left(\mathrm{ln}{x}\right)^{{n}} {dx}= \\ $$$$\left[\mathrm{ln}{x}=βˆ’{at},\:{a}>\mathrm{0},\:{x}={e}^{βˆ’{at}} ,\:{dx}=βˆ’{ae}^{βˆ’{at}} {dt},\:{t}_{\mathrm{1}} =+\infty,\:{t}_{\mathrm{2}} =\mathrm{0}\right] \\ $$$$\int_{+\infty} ^{\mathrm{0}} \left({e}^{βˆ’{at}} \right)^{\mathrm{2}{n}} \left(βˆ’{at}\right)^{{n}} \left(βˆ’{ae}^{βˆ’{at}} \right){dt}= \\ $$$$\left(βˆ’\mathrm{1}\right)^{{n}+\mathrm{1}} {a}^{{n}+\mathrm{1}} \int_{+\infty} ^{\mathrm{0}} {e}^{βˆ’\left(\mathrm{2}{n}+\mathrm{1}\right){at}} {t}^{{n}} {dt}= \\ $$$$\left[\left(\mathrm{2}{n}+\mathrm{1}\right){a}=\mathrm{1},\:{a}=\frac{\mathrm{1}}{\mathrm{2}{n}+\mathrm{1}}\right] \\ $$$$\frac{\left(βˆ’\mathrm{1}\right)^{{n}+\mathrm{1}} }{\left(\mathrm{2}{n}+\mathrm{1}\right)^{{n}+\mathrm{1}} }\int_{+\infty} ^{\mathrm{0}} {e}^{βˆ’{t}} {t}^{{n}} {dt}=\frac{\left(βˆ’\mathrm{1}\right)^{{n}} }{\left(\mathrm{2}{n}+\mathrm{1}\right)^{{n}+\mathrm{1}} }\int_{\mathrm{0}} ^{+\infty} {e}^{βˆ’{t}} {t}^{{n}} {dt}= \\ $$$$\frac{\left(βˆ’\mathrm{1}\right)^{{n}} }{\left(\mathrm{2}{n}+\mathrm{1}\right)^{{n}+\mathrm{1}} }\centerdot{n}! \\ $$$$\Omega=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}!}\centerdot\frac{\left(βˆ’\mathrm{1}\right)^{{n}} {n}!}{\left(\mathrm{2}{n}+\mathrm{1}\right)^{{n}+\mathrm{1}} }=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(βˆ’\mathrm{1}\right)^{{n}βˆ’\mathrm{1}} }{\left(\mathrm{2}{n}βˆ’\mathrm{1}\right)^{{n}} }\approx\mathrm{0}.\mathrm{896488781930} \\ $$
Commented by hardmath last updated on 28/Apr/25
cool my darling professor thankyou
$$\mathrm{cool}\:\mathrm{my}\:\mathrm{darling}\:\mathrm{professor}\:\mathrm{thankyou} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *