Menu Close

p-t-1-ipi-i-i-e-st-ln-s-0-s-ds-q-t-1-ipi-i-i-pi-2s-L-0-s-pi-2s-iY-0-is-e-st-ds-g-s-0-J-t-J-st-dt-h-s-0-




Question Number 219496 by SdC355 last updated on 27/Apr/25
p(t)=−(1/(iπ))∫_(−∞i+𝛄) ^( ∞i+𝛄)   ((e^(st) (ln(s)+𝛄_0 ))/s) ds  q(t)=(1/(iπ))∫_(−∞i+𝛄) ^(  ∞i+𝛄)  {−(π/(2s))L_0 (s)+(π/(2s))iY_0 (−is)}e^(st)  ds  g(s)=∫_0 ^( ∞)   J_ν (t)J_ν (st)dt  h(s)=∫_0 ^( ∞)  cos(t)J_ν (st)dt  e^t  is exponential function  ln(t) is natural logarithm  cos(t) is cosine function   J_ν (t) is Bessel function of the First kind  Y_ν (t) is Bessel function of the Second kind  L_ν (t) is modified StruveH function  𝛄_0  is Euler-mascheroni Const.(0.5772156649015.....)  π is pi (3.141592653589793238.........)  i is (√(−1))   ∞ is infinity
$${p}\left({t}\right)=−\frac{\mathrm{1}}{\boldsymbol{{i}}\pi}\int_{−\infty\boldsymbol{{i}}+\boldsymbol{\gamma}} ^{\:\infty\boldsymbol{{i}}+\boldsymbol{\gamma}} \:\:\frac{{e}^{{st}} \left(\mathrm{ln}\left({s}\right)+\boldsymbol{\gamma}_{\mathrm{0}} \right)}{{s}}\:\mathrm{d}{s} \\ $$$${q}\left({t}\right)=\frac{\mathrm{1}}{\boldsymbol{{i}}\pi}\int_{−\infty\boldsymbol{{i}}+\boldsymbol{\gamma}} ^{\:\:\infty\boldsymbol{{i}}+\boldsymbol{\gamma}} \:\left\{−\frac{\pi}{\mathrm{2}{s}}\boldsymbol{\mathrm{L}}_{\mathrm{0}} \left({s}\right)+\frac{\pi}{\mathrm{2}{s}}\boldsymbol{{i}}{Y}_{\mathrm{0}} \left(−\boldsymbol{{i}}{s}\right)\right\}{e}^{{st}} \:\mathrm{d}{s} \\ $$$$\mathrm{g}\left({s}\right)=\int_{\mathrm{0}} ^{\:\infty} \:\:{J}_{\nu} \left({t}\right){J}_{\nu} \left({st}\right)\mathrm{d}{t} \\ $$$${h}\left({s}\right)=\int_{\mathrm{0}} ^{\:\infty} \:\mathrm{cos}\left({t}\right){J}_{\nu} \left({st}\right)\mathrm{d}{t} \\ $$$${e}^{{t}} \:\mathrm{is}\:\mathrm{exponential}\:\mathrm{function} \\ $$$$\mathrm{ln}\left({t}\right)\:\mathrm{is}\:\mathrm{natural}\:\mathrm{logarithm} \\ $$$$\mathrm{cos}\left({t}\right)\:\mathrm{is}\:\mathrm{cosine}\:\mathrm{function}\: \\ $$$${J}_{\nu} \left({t}\right)\:\mathrm{is}\:\mathrm{Bessel}\:\mathrm{function}\:\mathrm{of}\:\mathrm{the}\:\mathrm{First}\:\mathrm{kind} \\ $$$${Y}_{\nu} \left({t}\right)\:\mathrm{is}\:\mathrm{Bessel}\:\mathrm{function}\:\mathrm{of}\:\mathrm{the}\:\mathrm{Second}\:\mathrm{kind} \\ $$$$\boldsymbol{\mathrm{L}}_{\nu} \left({t}\right)\:\mathrm{is}\:\mathrm{modified}\:\mathrm{StruveH}\:\mathrm{function} \\ $$$$\boldsymbol{\gamma}_{\mathrm{0}} \:\mathrm{is}\:\mathrm{Euler}-\mathrm{mascheroni}\:\mathrm{Const}.\left(\mathrm{0}.\mathrm{5772156649015}…..\right) \\ $$$$\pi\:\mathrm{is}\:\mathrm{pi}\:\left(\mathrm{3}.\mathrm{141592653589793238}………\right) \\ $$$$\boldsymbol{{i}}\:\mathrm{is}\:\sqrt{−\mathrm{1}}\: \\ $$$$\infty\:\mathrm{is}\:\mathrm{infinity}\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *