Menu Close

I-n-0-1-0-1-0-1-ln-1-x-1-x-2-x-n-1-x-1-1-x-2-1-x-n-dx-1-dx-2-dx-n-




Question Number 219553 by Nicholas666 last updated on 28/Apr/25
   I_n = ∫_0 ^( 1) ∫_0 ^( 1) ....∫_0 ^( 1)  ((ln(1+x_1 x_2  ....x_n ))/((1−x_1 )(1−x_2 )....(1−x_(n ) ))) dx_1 dx_2  ....dx_n
$$ \\ $$$$\:{I}_{{n}} =\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \int_{\mathrm{0}} ^{\:\mathrm{1}} ….\int_{\mathrm{0}} ^{\:\mathrm{1}} \:\frac{{ln}\left(\mathrm{1}+{x}_{\mathrm{1}} {x}_{\mathrm{2}} \:….{x}_{{n}} \right)}{\left(\mathrm{1}−{x}_{\mathrm{1}} \right)\left(\mathrm{1}−{x}_{\mathrm{2}} \right)….\left(\mathrm{1}−{x}_{{n}\:} \right)}\:{dx}_{\mathrm{1}} {dx}_{\mathrm{2}} \:….{dx}_{{n}} \:\:\:\:\:\:\:\: \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *