Menu Close

0-sin-z-z-z-2-4-dz-1-4-0-sin-z-z-sin-z-2z-4i-sin-z-2z-4i-dz-and-next-2pii-j-1-M-Res-h-a-j-f-h-




Question Number 219574 by SdC355 last updated on 29/Apr/25
∫_0 ^( ∞)   ((sin(z))/(z(z^2 +4))) dz=(1/4)∫_0 ^( ∞)   (((sin(z))/z)−((sin(z))/(2z+4i))−((sin(z))/(2z−4i))) dz  and next....???  2πiΣ_(j=1) ^M   Res_(h=a_j ) {f(h)}....
$$\int_{\mathrm{0}} ^{\:\infty} \:\:\frac{\mathrm{sin}\left({z}\right)}{{z}\left({z}^{\mathrm{2}} +\mathrm{4}\right)}\:\mathrm{d}{z}=\frac{\mathrm{1}}{\mathrm{4}}\int_{\mathrm{0}} ^{\:\infty} \:\:\left(\frac{\mathrm{sin}\left({z}\right)}{{z}}−\frac{\mathrm{sin}\left({z}\right)}{\mathrm{2}{z}+\mathrm{4}\boldsymbol{{i}}}−\frac{\mathrm{sin}\left({z}\right)}{\mathrm{2}{z}−\mathrm{4}\boldsymbol{{i}}}\right)\:\mathrm{d}{z} \\ $$$$\mathrm{and}\:\mathrm{next}….??? \\ $$$$\mathrm{2}\pi\boldsymbol{{i}}\underset{{j}=\mathrm{1}} {\overset{{M}} {\sum}}\:\:\mathrm{Res}_{{h}={a}_{{j}} } \left\{{f}\left({h}\right)\right\}…. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *