Menu Close

8x-2-9y-2-36-x-y-x-y-R-find-maximum-x-y-




Question Number 219570 by Rojarani last updated on 29/Apr/25
 8x^2 +9y^2 =36(x+y),     x,y∈R, find maximum (x+y)
$$\:\mathrm{8}{x}^{\mathrm{2}} +\mathrm{9}{y}^{\mathrm{2}} =\mathrm{36}\left({x}+{y}\right),\: \\ $$$$\:\:{x},{y}\in{R},\:{find}\:{maximum}\:\left({x}+{y}\right) \\ $$$$\: \\ $$
Answered by SdC355 last updated on 29/Apr/25
8x^2 +9y^2 =36(x+y) ⇄^(Equal)  ((16)/(153))(x−(9/4))^2 +(2/(17))(y−2)^2 =1  x=(9/4) , y=2   x+y=((17)/4)
$$\mathrm{8}{x}^{\mathrm{2}} +\mathrm{9}{y}^{\mathrm{2}} =\mathrm{36}\left({x}+{y}\right)\:\overset{\mathrm{Equal}} {\rightleftarrows}\:\frac{\mathrm{16}}{\mathrm{153}}\left({x}−\frac{\mathrm{9}}{\mathrm{4}}\right)^{\mathrm{2}} +\frac{\mathrm{2}}{\mathrm{17}}\left({y}−\mathrm{2}\right)^{\mathrm{2}} =\mathrm{1} \\ $$$${x}=\frac{\mathrm{9}}{\mathrm{4}}\:,\:{y}=\mathrm{2}\: \\ $$$${x}+{y}=\frac{\mathrm{17}}{\mathrm{4}} \\ $$
Answered by mr W last updated on 29/Apr/25
say x+y=s   8x^2 +9(s−x)^2 −36s=0  17x^2 −18sx+9s^2 −36s=0  Δ=18^2 s^2 −4×17(9s^2 −36s)≥0  (17−2s)s≥0  ⇒s≥0, 17−2s≥0 ⇒s≤((17)/2) ⇒0≤x+y=((17)/2)  i.e.(x+y)_(max) =((17)/2), (x+y)_(min) =0
$${say}\:{x}+{y}={s}\: \\ $$$$\mathrm{8}{x}^{\mathrm{2}} +\mathrm{9}\left({s}−{x}\right)^{\mathrm{2}} −\mathrm{36}{s}=\mathrm{0} \\ $$$$\mathrm{17}{x}^{\mathrm{2}} −\mathrm{18}{sx}+\mathrm{9}{s}^{\mathrm{2}} −\mathrm{36}{s}=\mathrm{0} \\ $$$$\Delta=\mathrm{18}^{\mathrm{2}} {s}^{\mathrm{2}} −\mathrm{4}×\mathrm{17}\left(\mathrm{9}{s}^{\mathrm{2}} −\mathrm{36}{s}\right)\geqslant\mathrm{0} \\ $$$$\left(\mathrm{17}−\mathrm{2}{s}\right){s}\geqslant\mathrm{0} \\ $$$$\Rightarrow{s}\geqslant\mathrm{0},\:\mathrm{17}−\mathrm{2}{s}\geqslant\mathrm{0}\:\Rightarrow{s}\leqslant\frac{\mathrm{17}}{\mathrm{2}}\:\Rightarrow\mathrm{0}\leqslant{x}+{y}=\frac{\mathrm{17}}{\mathrm{2}} \\ $$$${i}.{e}.\left({x}+{y}\right)_{{max}} =\frac{\mathrm{17}}{\mathrm{2}},\:\left({x}+{y}\right)_{{min}} =\mathrm{0} \\ $$
Commented by mr W last updated on 29/Apr/25

Leave a Reply

Your email address will not be published. Required fields are marked *