Menu Close

prove-0-1-0-1-0-1-n-times-x-1-x-2-x-n-ln-x-1-ln-x-2-ln-x-n-dx-1-dx-2-dx-n-Equal-n-1-2n-




Question Number 219577 by SdC355 last updated on 29/Apr/25
prove  ∫_0 ^( 1) ∫_0 ^( 1) ...∫_0 ^( 1) _(n times)   x_1 ^α x_2 ^α ....x_n ^α ln(x_1 )ln(x_2 )....ln(x_n )dx_1 dx_2 ..dx_n   =^(Equal)    (((−)^n )/((α+1)^(2n) ))
$$\mathrm{prove} \\ $$$$\underset{{n}\:\mathrm{times}} {\int_{\mathrm{0}} ^{\:\mathrm{1}} \int_{\mathrm{0}} ^{\:\mathrm{1}} …\int_{\mathrm{0}} ^{\:\mathrm{1}} }\:\:{x}_{\mathrm{1}} ^{\alpha} {x}_{\mathrm{2}} ^{\alpha} ….{x}_{{n}} ^{\alpha} \mathrm{ln}\left({x}_{\mathrm{1}} \right)\mathrm{ln}\left({x}_{\mathrm{2}} \right)….\mathrm{ln}\left({x}_{{n}} \right)\mathrm{d}{x}_{\mathrm{1}} \mathrm{d}{x}_{\mathrm{2}} ..\mathrm{d}{x}_{{n}} \\ $$$$\overset{\mathrm{Equal}} {=}\:\:\:\frac{\left(−\right)^{{n}} }{\left(\alpha+\mathrm{1}\right)^{\mathrm{2}{n}} } \\ $$
Commented by mr W last updated on 29/Apr/25
⇒Q219552
$$\Rightarrow{Q}\mathrm{219552} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *