Menu Close

Question-219587




Question Number 219587 by Nicholas666 last updated on 29/Apr/25
Commented by Nicholas666 last updated on 29/Apr/25
https://www.quora.com/profile/Bekicot-5/math-math-If-math-a-b-0-math-and-math-a-b-frac-2-3-math-Then-math-frac-b-3-3a-2-frac-a?ch=10&oid=221057452&share=32d38051&srid=5Xg5SU&target_type=post
Answered by Ghisom last updated on 29/Apr/25
a, b>0∧a+b=(2/3) ⇒ 0<a, b<(2/3)  let a=(1/3)(1+sin α)∧b=(1/3)(1−sin α)  inserting & transforming leads to  ((16−6sin^2  α)/(sin^4  α −20sin^2  α +64))≤((sin^2  α +2)/8)  with sin^2  α =1−cos^2  α and cos α =c we get  ((c^6 +15c^4 +39c^2 −55)/(c^4 +18c^2 +45))≤0  c^4 +18c^2 +45>0  c^6 +15c^4 +39c^2 −55≤0  (c^2 −1)(c^2 +5)(c^2 +11)≤0  (c^2 +5)(c^2 +11)>0  c^2 −1≤0  cos^2  α ≤1 true
$${a},\:{b}>\mathrm{0}\wedge{a}+{b}=\frac{\mathrm{2}}{\mathrm{3}}\:\Rightarrow\:\mathrm{0}<{a},\:{b}<\frac{\mathrm{2}}{\mathrm{3}} \\ $$$$\mathrm{let}\:{a}=\frac{\mathrm{1}}{\mathrm{3}}\left(\mathrm{1}+\mathrm{sin}\:\alpha\right)\wedge{b}=\frac{\mathrm{1}}{\mathrm{3}}\left(\mathrm{1}−\mathrm{sin}\:\alpha\right) \\ $$$$\mathrm{inserting}\:\&\:\mathrm{transforming}\:\mathrm{leads}\:\mathrm{to} \\ $$$$\frac{\mathrm{16}−\mathrm{6sin}^{\mathrm{2}} \:\alpha}{\mathrm{sin}^{\mathrm{4}} \:\alpha\:−\mathrm{20sin}^{\mathrm{2}} \:\alpha\:+\mathrm{64}}\leqslant\frac{\mathrm{sin}^{\mathrm{2}} \:\alpha\:+\mathrm{2}}{\mathrm{8}} \\ $$$$\mathrm{with}\:\mathrm{sin}^{\mathrm{2}} \:\alpha\:=\mathrm{1}−\mathrm{cos}^{\mathrm{2}} \:\alpha\:\mathrm{and}\:\mathrm{cos}\:\alpha\:={c}\:\mathrm{we}\:\mathrm{get} \\ $$$$\frac{{c}^{\mathrm{6}} +\mathrm{15}{c}^{\mathrm{4}} +\mathrm{39}{c}^{\mathrm{2}} −\mathrm{55}}{{c}^{\mathrm{4}} +\mathrm{18}{c}^{\mathrm{2}} +\mathrm{45}}\leqslant\mathrm{0} \\ $$$${c}^{\mathrm{4}} +\mathrm{18}{c}^{\mathrm{2}} +\mathrm{45}>\mathrm{0} \\ $$$${c}^{\mathrm{6}} +\mathrm{15}{c}^{\mathrm{4}} +\mathrm{39}{c}^{\mathrm{2}} −\mathrm{55}\leqslant\mathrm{0} \\ $$$$\left({c}^{\mathrm{2}} −\mathrm{1}\right)\left({c}^{\mathrm{2}} +\mathrm{5}\right)\left({c}^{\mathrm{2}} +\mathrm{11}\right)\leqslant\mathrm{0} \\ $$$$\left({c}^{\mathrm{2}} +\mathrm{5}\right)\left({c}^{\mathrm{2}} +\mathrm{11}\right)>\mathrm{0} \\ $$$${c}^{\mathrm{2}} −\mathrm{1}\leqslant\mathrm{0} \\ $$$$\mathrm{cos}^{\mathrm{2}} \:\alpha\:\leqslant\mathrm{1}\:\mathrm{true} \\ $$
Commented by Nicholas666 last updated on 29/Apr/25
thank you sir
$${thank}\:{you}\:{sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *