Menu Close

Solve-x-2-y-2-x-xy-1-x-x-2-2-y-x-e-kx-




Question Number 219651 by SdC355 last updated on 30/Apr/25
Solve  x^2 y^((2)) (x)+xy^((1)) (x)+(x^2 −ν^2 )y(x)=e^(−kx)
$$\mathrm{Solve} \\ $$$${x}^{\mathrm{2}} {y}^{\left(\mathrm{2}\right)} \left({x}\right)+{xy}^{\left(\mathrm{1}\right)} \left({x}\right)+\left({x}^{\mathrm{2}} −\nu^{\mathrm{2}} \right){y}\left({x}\right)={e}^{−{kx}} \\ $$
Answered by MrGaster last updated on 30/Apr/25
Solution of H  equation:  y_h (x)=C_1 J_ν (x)+C_2 Y_ν (x)  Volynski determinant:  W(J_ν (x),Y_ν (x))=(2/(πx))  Special solution structure:  y_p (x)=−J_ν (x)∫((Y_ν (t)e^(−kt) )/(t^2 ∙(2/(πt))))dt+Y_ν (x)∫((J_ν (t)e^(−kt) )/(t^2 ∙(2/(πt))))dt  Simplify the integral term:  y_p (x)=(π/2)[Y_ν (x)∫((J_ν (t)e^(−ki) )/t)dt−J_ν (x)∫((Y_ν (t)e^(−kt) )/t)dt]  General solution:  y(x)=C_1 J_ν (x)+C_2 Y_ν (x)+(π/2)[Y_ν (x)∫((J_ν (t)e^(−ki) )/t)dt−J_ν (x)∫((Y_ν (t)e^(−kt) )/t)dt]
$$\mathrm{Solution}\:\mathrm{of}\:\mathrm{H}\:\:\mathrm{equation}: \\ $$$${y}_{{h}} \left({x}\right)={C}_{\mathrm{1}} {J}_{\nu} \left({x}\right)+{C}_{\mathrm{2}} {Y}_{\nu} \left({x}\right) \\ $$$$\mathrm{Volynski}\:\mathrm{determinant}: \\ $$$${W}\left({J}_{\nu} \left({x}\right),{Y}_{\nu} \left({x}\right)\right)=\frac{\mathrm{2}}{\pi{x}} \\ $$$$\mathrm{Special}\:\mathrm{solution}\:\mathrm{structure}: \\ $$$${y}_{{p}} \left({x}\right)=−{J}_{\nu} \left({x}\right)\int\frac{{Y}_{\nu} \left({t}\right){e}^{−{kt}} }{{t}^{\mathrm{2}} \centerdot\frac{\mathrm{2}}{\pi{t}}}{dt}+{Y}_{\nu} \left({x}\right)\int\frac{{J}_{\nu} \left({t}\right){e}^{−{kt}} }{{t}^{\mathrm{2}} \centerdot\frac{\mathrm{2}}{\pi{t}}}{dt} \\ $$$$\mathrm{Simplify}\:\mathrm{the}\:\mathrm{integral}\:\mathrm{term}: \\ $$$${y}_{{p}} \left({x}\right)=\frac{\pi}{\mathrm{2}}\left[{Y}_{\nu} \left({x}\right)\int\frac{{J}_{\nu} \left({t}\right){e}^{−{ki}} }{{t}}{dt}−{J}_{\nu} \left({x}\right)\int\frac{{Y}_{\nu} \left({t}\right){e}^{−{kt}} }{{t}}{dt}\right] \\ $$$$\mathrm{General}\:\mathrm{solution}: \\ $$$${y}\left({x}\right)={C}_{\mathrm{1}} {J}_{\nu} \left({x}\right)+{C}_{\mathrm{2}} {Y}_{\nu} \left({x}\right)+\frac{\pi}{\mathrm{2}}\left[{Y}_{\nu} \left({x}\right)\int\frac{{J}_{\nu} \left({t}\right){e}^{−{ki}} }{{t}}{dt}−{J}_{\nu} \left({x}\right)\int\frac{{Y}_{\nu} \left({t}\right){e}^{−{kt}} }{{t}}{dt}\right] \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *