Question Number 219720 by Spillover last updated on 01/May/25

Answered by mr W last updated on 01/May/25

$$\frac{{R}_{\mathrm{2}} }{{x}}=\frac{{R}_{\mathrm{1}} +{R}_{\mathrm{2}} }{{a}}=\frac{{R}_{\mathrm{2}} +{R}_{\mathrm{3}} }{{b}}={k},\:{say} \\ $$$$\Rightarrow{R}_{\mathrm{2}} ={kx} \\ $$$$\Rightarrow{R}_{\mathrm{1}} +{R}_{\mathrm{2}} ={ka}\:\Rightarrow{R}_{\mathrm{1}} ={k}\left({a}−{x}\right) \\ $$$$\Rightarrow{R}_{\mathrm{2}} +{R}_{\mathrm{3}} ={kb}\:\Rightarrow{R}_{\mathrm{3}} ={k}\left({b}−{x}\right) \\ $$$$\frac{{R}_{\mathrm{2}} −{R}_{\mathrm{1}} }{{a}}=\frac{{R}_{\mathrm{3}} −{R}_{\mathrm{2}} }{{b}} \\ $$$$\frac{{kx}−{k}\left({a}−{x}\right)}{{a}}=\frac{{k}\left({b}−{x}\right)−{kx}}{{b}} \\ $$$$\frac{\mathrm{2}{x}−{a}}{{a}}=\frac{{b}−\mathrm{2}{x}}{{b}} \\ $$$$\frac{\mathrm{2}{x}}{{a}}+\frac{\mathrm{2}{x}}{{b}}=\mathrm{2} \\ $$$$\Rightarrow\frac{\mathrm{1}}{{a}}+\frac{\mathrm{1}}{{b}}=\frac{\mathrm{1}}{{x}}\:\checkmark \\ $$
Commented by Spillover last updated on 01/May/25

$${very}\:{nice}\:{approach} \\ $$
Answered by Spillover last updated on 01/May/25

Answered by Spillover last updated on 01/May/25

Answered by Spillover last updated on 01/May/25
