Menu Close

Question-219733




Question Number 219733 by Spillover last updated on 01/May/25
Answered by SdC355 last updated on 01/May/25
∣g(x)−2∣≤3(x−1)^2   −3(x−1)^2 +2≤g(x)≤3(x−1)^2 +2  lim_(x→1) −3(x−1)^2 +2≤lim_(x→1)  g(x)≤lim_(x→1)  3(x−1)^2 +2  2≤lim_(x→1)  g(x)≤2   ∴ lim_(x→1)  g(x)=2
$$\mid\mathrm{g}\left({x}\right)−\mathrm{2}\mid\leq\mathrm{3}\left({x}−\mathrm{1}\right)^{\mathrm{2}} \\ $$$$−\mathrm{3}\left({x}−\mathrm{1}\right)^{\mathrm{2}} +\mathrm{2}\leq\mathrm{g}\left({x}\right)\leq\mathrm{3}\left({x}−\mathrm{1}\right)^{\mathrm{2}} +\mathrm{2} \\ $$$$\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}−\mathrm{3}\left({x}−\mathrm{1}\right)^{\mathrm{2}} +\mathrm{2}\leq\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\:\mathrm{g}\left({x}\right)\leq\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\:\mathrm{3}\left({x}−\mathrm{1}\right)^{\mathrm{2}} +\mathrm{2} \\ $$$$\mathrm{2}\leq\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\:\mathrm{g}\left({x}\right)\leq\mathrm{2}\: \\ $$$$\therefore\:\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\:\mathrm{g}\left({x}\right)=\mathrm{2}\: \\ $$
Commented by Spillover last updated on 01/May/25
thank you
$${thank}\:{you} \\ $$
Answered by Spillover last updated on 01/May/25

Leave a Reply

Your email address will not be published. Required fields are marked *