Menu Close

Question-219770




Question Number 219770 by ajfour last updated on 01/May/25
Commented by ajfour last updated on 01/May/25
A rolling cylinder of length L rolls   gathering moss at the rate (dm/dt)=ρ_0 Lv.   Find radius r(t)and speed v(t) of   center of mass.
$${A}\:{rolling}\:{cylinder}\:{of}\:{length}\:{L}\:{rolls} \\ $$$$\:{gathering}\:{moss}\:{at}\:{the}\:{rate}\:\frac{{dm}}{{dt}}=\rho_{\mathrm{0}} {Lv}.\: \\ $$$${Find}\:{radius}\:{r}\left({t}\right){and}\:{speed}\:{v}\left({t}\right)\:{of}\: \\ $$$${center}\:{of}\:{mass}. \\ $$
Commented by ajfour last updated on 01/May/25
Commented by mr W last updated on 02/May/25
please recheck  (dm/dt)=ρ_0 Lv  both sides have different units.  therefore i have added a constand λ  in the unit [m].  or did you even mean:  (dm/dt)=ρ_0 rLv ?
$${please}\:{recheck} \\ $$$$\frac{{dm}}{{dt}}=\rho_{\mathrm{0}} {Lv} \\ $$$${both}\:{sides}\:{have}\:{different}\:{units}. \\ $$$${therefore}\:{i}\:{have}\:{added}\:{a}\:{constand}\:\lambda \\ $$$${in}\:{the}\:{unit}\:\left[{m}\right]. \\ $$$${or}\:{did}\:{you}\:{even}\:{mean}: \\ $$$$\frac{{dm}}{{dt}}=\rho_{\mathrm{0}} {rLv}\:? \\ $$
Answered by mr W last updated on 02/May/25
(dm/dt)=ρ_0 λLv   (λ constant in [m])  m=ρ_0 πr^2 L  (dm/dt)=2ρ_0 πLr(dr/dt)  2ρ_0 πLr(dr/dt)=ρ_0 λLv  ⇒(dr/dt)=((λv)/(2πr))  I=((mr^2 )/2)=((ρ_0 πLr^4 )/2)  ω=(v/r)  (d/dt)(mv)=f    (f=friction force)  (d/dt)(Iω)=−fr  (d/dt)(Iω)=−r(d/dt)(mv)  (d/dt)(((ρ_0 πLr^3 v)/2))=−r(d/dt)(ρ_0 πr^2 Lv)  (d/dt)(r^3 v)=−2r(d/dt)(r^2 v)  r^3 (dv/dt)+3r^2 v(dr/dt)=−2r(r^2 (dv/dt)+2rv(dr/dt))  3r(dv/dt)+7v(dr/dt)=0  3∫_v_0  ^v (dv/v)=−7∫_r_0  ^r (dr/r)  3ln (v/v_0 )=−7ln (r/r_0 )  ⇒(v/v_0 )=((r/r_0 ))^(−(7/3))   (d/dt)((r/r_0 ))=((λv_0 )/(2πr_0 ^2 ))((r/r_0 ))^(−((10)/3))   ∫_1 ^(r/r_0 ) ((r/r_0 ))^((10)/3) d((r/r_0 ))=((λv_0 )/(2πr_0 ^2 ))∫_0 ^t dt  (3/(13))[((r/r_0 ))^((13)/3) −1]=((λv_0 t)/(2πr_0 ^2 ))  ⇒(r/r_0 )=(1+((13λv_0 t)/(6πr_0 ^2 )))^(3/(13))   ⇒(v/v_0 )=(1+((13λv_0 t)/(6πr_0 ^2 )))^(−(7/(13)))
$$\frac{{dm}}{{dt}}=\rho_{\mathrm{0}} \lambda{Lv}\:\:\:\left(\lambda\:{constant}\:{in}\:\left[{m}\right]\right) \\ $$$${m}=\rho_{\mathrm{0}} \pi{r}^{\mathrm{2}} {L} \\ $$$$\frac{{dm}}{{dt}}=\mathrm{2}\rho_{\mathrm{0}} \pi{Lr}\frac{{dr}}{{dt}} \\ $$$$\mathrm{2}\rho_{\mathrm{0}} \pi{Lr}\frac{{dr}}{{dt}}=\rho_{\mathrm{0}} \lambda{Lv} \\ $$$$\Rightarrow\frac{{dr}}{{dt}}=\frac{\lambda{v}}{\mathrm{2}\pi{r}} \\ $$$${I}=\frac{{mr}^{\mathrm{2}} }{\mathrm{2}}=\frac{\rho_{\mathrm{0}} \pi{Lr}^{\mathrm{4}} }{\mathrm{2}} \\ $$$$\omega=\frac{{v}}{{r}} \\ $$$$\frac{{d}}{{dt}}\left({mv}\right)={f}\:\:\:\:\left({f}={friction}\:{force}\right) \\ $$$$\frac{{d}}{{dt}}\left({I}\omega\right)=−{fr} \\ $$$$\frac{{d}}{{dt}}\left({I}\omega\right)=−{r}\frac{{d}}{{dt}}\left({mv}\right) \\ $$$$\frac{{d}}{{dt}}\left(\frac{\rho_{\mathrm{0}} \pi{Lr}^{\mathrm{3}} {v}}{\mathrm{2}}\right)=−{r}\frac{{d}}{{dt}}\left(\rho_{\mathrm{0}} \pi{r}^{\mathrm{2}} {Lv}\right) \\ $$$$\frac{{d}}{{dt}}\left({r}^{\mathrm{3}} {v}\right)=−\mathrm{2}{r}\frac{{d}}{{dt}}\left({r}^{\mathrm{2}} {v}\right) \\ $$$${r}^{\mathrm{3}} \frac{{dv}}{{dt}}+\mathrm{3}{r}^{\mathrm{2}} {v}\frac{{dr}}{{dt}}=−\mathrm{2}{r}\left({r}^{\mathrm{2}} \frac{{dv}}{{dt}}+\mathrm{2}{rv}\frac{{dr}}{{dt}}\right) \\ $$$$\mathrm{3}{r}\frac{{dv}}{{dt}}+\mathrm{7}{v}\frac{{dr}}{{dt}}=\mathrm{0} \\ $$$$\mathrm{3}\int_{{v}_{\mathrm{0}} } ^{{v}} \frac{{dv}}{{v}}=−\mathrm{7}\int_{{r}_{\mathrm{0}} } ^{{r}} \frac{{dr}}{{r}} \\ $$$$\mathrm{3ln}\:\frac{{v}}{{v}_{\mathrm{0}} }=−\mathrm{7ln}\:\frac{{r}}{{r}_{\mathrm{0}} } \\ $$$$\Rightarrow\frac{{v}}{{v}_{\mathrm{0}} }=\left(\frac{{r}}{{r}_{\mathrm{0}} }\right)^{−\frac{\mathrm{7}}{\mathrm{3}}} \\ $$$$\frac{{d}}{{dt}}\left(\frac{{r}}{{r}_{\mathrm{0}} }\right)=\frac{\lambda{v}_{\mathrm{0}} }{\mathrm{2}\pi{r}_{\mathrm{0}} ^{\mathrm{2}} }\left(\frac{{r}}{{r}_{\mathrm{0}} }\right)^{−\frac{\mathrm{10}}{\mathrm{3}}} \\ $$$$\int_{\mathrm{1}} ^{\frac{{r}}{{r}_{\mathrm{0}} }} \left(\frac{{r}}{{r}_{\mathrm{0}} }\right)^{\frac{\mathrm{10}}{\mathrm{3}}} {d}\left(\frac{{r}}{{r}_{\mathrm{0}} }\right)=\frac{\lambda{v}_{\mathrm{0}} }{\mathrm{2}\pi{r}_{\mathrm{0}} ^{\mathrm{2}} }\int_{\mathrm{0}} ^{{t}} {dt} \\ $$$$\frac{\mathrm{3}}{\mathrm{13}}\left[\left(\frac{{r}}{{r}_{\mathrm{0}} }\right)^{\frac{\mathrm{13}}{\mathrm{3}}} −\mathrm{1}\right]=\frac{\lambda{v}_{\mathrm{0}} {t}}{\mathrm{2}\pi{r}_{\mathrm{0}} ^{\mathrm{2}} } \\ $$$$\Rightarrow\frac{{r}}{{r}_{\mathrm{0}} }=\left(\mathrm{1}+\frac{\mathrm{13}\lambda{v}_{\mathrm{0}} {t}}{\mathrm{6}\pi{r}_{\mathrm{0}} ^{\mathrm{2}} }\right)^{\frac{\mathrm{3}}{\mathrm{13}}} \\ $$$$\Rightarrow\frac{{v}}{{v}_{\mathrm{0}} }=\left(\mathrm{1}+\frac{\mathrm{13}\lambda{v}_{\mathrm{0}} {t}}{\mathrm{6}\pi{r}_{\mathrm{0}} ^{\mathrm{2}} }\right)^{−\frac{\mathrm{7}}{\mathrm{13}}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *