Menu Close

D-0-1-N-h-1-N-e-1-2-x-h-dx-h-




Question Number 219795 by SdC355 last updated on 02/May/25
∫_(D=[0,1]^N )  Π_(h=1) ^N  e^(−(1/2)x_h ) dx_h
$$\int_{\mathcal{D}=\left[\mathrm{0},\mathrm{1}\right]^{{N}} } \:\underset{{h}=\mathrm{1}} {\overset{{N}} {\prod}}\:{e}^{−\frac{\mathrm{1}}{\mathrm{2}}{x}_{{h}} } \mathrm{d}{x}_{{h}} \\ $$
Answered by MrGaster last updated on 02/May/25
(1):Π_(n=1) ^N ∫_0 ^1 e^(−(1/2)x_h ) dx_h   Π_(h=1) ^N [−2e^(−(1/2)x_h ) ]_0 ^1   Π_(h=1) ^N (−2e^(−(1/2)) +2e^0 )  Π_(h=1) ^N 2(1−e^(−(1/2)) )  (2(1−e^(−(1/2)) ))^N   (2):Π_(n=1) ^N [−2e^(−(x_h /2)) ]_0 ^1 =Π_(h=1) ^N 2(1−e^(−(1/2)) )=(2(1−e^(−(1/2)) ))^N   (3):  =∫_0 ^1 e^(−(1/2)x_1 ) dx_1 ∫_0 ^1 e^(−(1/2)x_2 ) dx_2 ∫_0 ^1 e^(−(1/2)x_N ) dx_N   =(∫_0 ^1 e^(−(1/2)) dx)^N   =([−2e^(−(1/2)x) ]_(0 ) ^1 )^N   =(2(1−(1/( (√e)))))^N   =(2(1−e^(−(1/2)) ))^N
$$\left(\mathrm{1}\right):\underset{{n}=\mathrm{1}} {\overset{{N}} {\prod}}\int_{\mathrm{0}} ^{\mathrm{1}} {e}^{−\frac{\mathrm{1}}{\mathrm{2}}{x}_{{h}} } {dx}_{{h}} \\ $$$$\underset{{h}=\mathrm{1}} {\overset{{N}} {\prod}}\left[−\mathrm{2}{e}^{−\frac{\mathrm{1}}{\mathrm{2}}{x}_{{h}} } \right]_{\mathrm{0}} ^{\mathrm{1}} \\ $$$$\underset{{h}=\mathrm{1}} {\overset{{N}} {\prod}}\left(−\mathrm{2}{e}^{−\frac{\mathrm{1}}{\mathrm{2}}} +\mathrm{2}{e}^{\mathrm{0}} \right) \\ $$$$\underset{{h}=\mathrm{1}} {\overset{{N}} {\prod}}\mathrm{2}\left(\mathrm{1}−{e}^{−\frac{\mathrm{1}}{\mathrm{2}}} \right) \\ $$$$\left(\mathrm{2}\left(\mathrm{1}−{e}^{−\frac{\mathrm{1}}{\mathrm{2}}} \right)\right)^{{N}} \\ $$$$\left(\mathrm{2}\right):\underset{{n}=\mathrm{1}} {\overset{{N}} {\prod}}\left[−\mathrm{2}{e}^{−\frac{{x}_{{h}} }{\mathrm{2}}} \right]_{\mathrm{0}} ^{\mathrm{1}} =\underset{{h}=\mathrm{1}} {\overset{{N}} {\prod}}\mathrm{2}\left(\mathrm{1}−{e}^{−\frac{\mathrm{1}}{\mathrm{2}}} \right)=\left(\mathrm{2}\left(\mathrm{1}−{e}^{−\frac{\mathrm{1}}{\mathrm{2}}} \right)\right)^{{N}} \\ $$$$\left(\mathrm{3}\right): \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} {e}^{−\frac{\mathrm{1}}{\mathrm{2}}{x}_{\mathrm{1}} } {dx}_{\mathrm{1}} \int_{\mathrm{0}} ^{\mathrm{1}} {e}^{−\frac{\mathrm{1}}{\mathrm{2}}{x}_{\mathrm{2}} } {dx}_{\mathrm{2}} \int_{\mathrm{0}} ^{\mathrm{1}} {e}^{−\frac{\mathrm{1}}{\mathrm{2}}{x}_{{N}} } {dx}_{{N}} \\ $$$$=\left(\int_{\mathrm{0}} ^{\mathrm{1}} {e}^{−\frac{\mathrm{1}}{\mathrm{2}}} {dx}\right)^{{N}} \\ $$$$=\left(\left[−\mathrm{2}{e}^{−\frac{\mathrm{1}}{\mathrm{2}}{x}} \right]_{\mathrm{0}\:} ^{\mathrm{1}} \right)^{{N}} \\ $$$$=\left(\mathrm{2}\left(\mathrm{1}−\frac{\mathrm{1}}{\:\sqrt{{e}}}\right)\right)^{{N}} \\ $$$$=\left(\mathrm{2}\left(\mathrm{1}−{e}^{−\frac{\mathrm{1}}{\mathrm{2}}} \right)\right)^{{N}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *