Menu Close

lim-h-0-cos-x-h-cos-x-1-h-




Question Number 219806 by SdC355 last updated on 02/May/25
lim_(h→0)   (((cos(x+h))/(cos(x))))^(1/h) =??
$$\underset{{h}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\:\left(\frac{\mathrm{cos}\left({x}+{h}\right)}{\mathrm{cos}\left({x}\right)}\right)^{\frac{\mathrm{1}}{{h}}} =?? \\ $$
Answered by fantastic last updated on 02/May/25
cos(y)^1_y
$${cos}\left({y}\right)^{\underset{{y}} {\mathrm{1}}} \\ $$
Answered by mehdee7396 last updated on 02/May/25
lim_(h→0) (((cos(x+h))/(cosx))−1)×(1/h)  =lim_(h→0) (((cos(x+h)−cosx)/(cosx)))×(1/h)  =lim_(h→0) (((−2sin(x+(h/2))sin((h/2))/(cosx)))×(1/h)  =−tanx  ⇒Ans=e^(−tanx)
$${lim}_{{h}\rightarrow\mathrm{0}} \left(\frac{{cos}\left({x}+{h}\right)}{{cosx}}−\mathrm{1}\right)×\frac{\mathrm{1}}{{h}} \\ $$$$={lim}_{{h}\rightarrow\mathrm{0}} \left(\frac{{cos}\left({x}+{h}\right)−{cosx}}{{cosx}}\right)×\frac{\mathrm{1}}{{h}} \\ $$$$={lim}_{{h}\rightarrow\mathrm{0}} \left(\frac{−\mathrm{2}{sin}\left({x}+\frac{{h}}{\mathrm{2}}\right){sin}\left(\frac{{h}}{\mathrm{2}}\right.}{{cosx}}\right)×\frac{\mathrm{1}}{{h}} \\ $$$$=−{tanx} \\ $$$$\Rightarrow{Ans}={e}^{−{tanx}} \\ $$$$ \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *