Menu Close

prove-lim-h-0-g-z-h-g-z-1-h-e-d-dz-ln-g-z-e-g-1-z-g-z-




Question Number 219831 by SdC355 last updated on 02/May/25
prove  lim_(h→0) (((g(z+h))/(g(z))))^(1/h) =e^(((d  )/dz) ln (g(z))) =e^((g^((1)) (z))/(g(z)))
$$\mathrm{prove} \\ $$$$\underset{{h}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\frac{\mathrm{g}\left({z}+{h}\right)}{\mathrm{g}\left({z}\right)}\right)^{\frac{\mathrm{1}}{{h}}} ={e}^{\frac{\mathrm{d}\:\:}{\mathrm{d}{z}}\:\mathrm{ln}\:\left(\mathrm{g}\left({z}\right)\right)} ={e}^{\frac{\mathrm{g}^{\left(\mathrm{1}\right)} \left({z}\right)}{\mathrm{g}\left({z}\right)}} \\ $$
Answered by MrGaster last updated on 04/May/25
lim_(h→0) (((g(z+h))/(g(z))))^(1/h) =exp(lim_(h→0) ((ln(g(z+h))−ln(g(z)))/h))=exp((d/dz)ln(g(z)))=e^((g′(z))/(g(z)))
$$\mathrm{lim}_{{h}\rightarrow\mathrm{0}} \left(\frac{\mathrm{g}\left({z}+{h}\right)}{\mathrm{g}\left({z}\right)}\right)^{\frac{\mathrm{1}}{{h}}} =\mathrm{exp}\left(\underset{{h}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{ln}\left({g}\left({z}+{h}\right)\right)−\mathrm{ln}\left({g}\left({z}\right)\right)}{{h}}\right)=\mathrm{exp}\left(\frac{{d}}{{dz}}\mathrm{ln}\left({g}\left({z}\right)\right)\right)={e}^{\frac{{g}'\left({z}\right)}{{g}\left({z}\right)}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *