Menu Close

Prove-that-0-1-ln-x-dx-ln-2pi-




Question Number 219865 by Nicholas666 last updated on 02/May/25
            Prove that;               ∫_( 0) ^( 1)  lnΓ(x)dx = ln (√(2π))
$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\mathrm{Prove}\:\mathrm{that}; \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\underset{\:\mathrm{0}} {\overset{\:\mathrm{1}} {\int}}\:{ln}\Gamma\left({x}\right){dx}\:=\:{ln}\:\sqrt{\mathrm{2}\pi} \\ $$$$ \\ $$
Answered by MrGaster last updated on 03/May/25
∫_0 ^1 ln Γ(x)dx=∫_0 ^1 ln Γ(1−x)dx  ∫_0 ^1 lnΓ(x)dx+∫_0 ^1 lnΓ(1−x)dx=2∫_0 ^1 lnΓ(x)dx  Γ(x)Γ(1−x)=(π/(sin(πx)))  lnΓ(x)+lnΓ(1−x)=ln π−ln sin(πx)  2∫_0 ^1 ln Γ(x)dx=∫_0 ^1 ln π dx−∫_0 ^1 ln sin(πx)dx  ∫_0 ^1 ln π dx=ln π  ∫_0 ^1 ln sin(πx)dx=−ln 2  2∫_0 ^1 lnΓ(x)dx=ln π+ln 2=ln(2π)  ∫_0 ^1 ln(x)dx=(1/2)ln(2π)=ln(√(2π))
$$\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{ln}\:\Gamma\left({x}\right){dx}=\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{ln}\:\Gamma\left(\mathrm{1}−{x}\right){dx} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{ln}\Gamma\left({x}\right){dx}+\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{ln}\Gamma\left(\mathrm{1}−{x}\right){dx}=\mathrm{2}\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{ln}\Gamma\left({x}\right){dx} \\ $$$$\Gamma\left({x}\right)\Gamma\left(\mathrm{1}−{x}\right)=\frac{\pi}{\mathrm{sin}\left(\pi{x}\right)} \\ $$$$\mathrm{ln}\Gamma\left({x}\right)+\mathrm{ln}\Gamma\left(\mathrm{1}−{x}\right)=\mathrm{ln}\:\pi−\mathrm{ln}\:\mathrm{sin}\left(\pi{x}\right) \\ $$$$\mathrm{2}\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{ln}\:\Gamma\left({x}\right){dx}=\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{ln}\:\pi\:{dx}−\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{ln}\:\mathrm{sin}\left(\pi{x}\right){dx} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{ln}\:\pi\:{dx}=\mathrm{ln}\:\pi \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{ln}\:\mathrm{sin}\left(\pi{x}\right){dx}=−\mathrm{ln}\:\mathrm{2} \\ $$$$\mathrm{2}\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{ln}\Gamma\left({x}\right){dx}=\mathrm{ln}\:\pi+\mathrm{ln}\:\mathrm{2}=\mathrm{ln}\left(\mathrm{2}\pi\right) \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{ln}\left({x}\right){dx}=\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ln}\left(\mathrm{2}\pi\right)=\mathrm{ln}\sqrt{\mathrm{2}\pi} \\ $$
Commented by Nicholas666 last updated on 03/May/25
thanks
$${thanks} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *