Question Number 219884 by Rojarani last updated on 03/May/25

$$\:\left({a},{b},{c}\right)>\mathrm{0}\:{such}\:{that}, \\ $$$$\:\:{a}+{b}+{c}=\mathrm{13},\:\:{abc}=\mathrm{36} \\ $$$$\:\:{find}\:{the}\:{maximum}\:{and}\:{minimum}\: \\ $$$$\:{value}\:{of}\:\:{ab}+{bc}+{ca}=? \\ $$
Answered by MrGaster last updated on 03/May/25

Answered by A5T last updated on 03/May/25
![For b=f(a); c=f(a) a+b+c=13 ⇒ 1+(db/da)+(dc/da)=0...(i) abc=36⇒c[b+a(db/da)]+[ab](dc/da)=0⇒[c(db/da)+b(dc/da)]=((−bc)/a)...(ii) ab+bc+ca at turning point when a(db/da)+b+b(dc/da)+c(db/da)+c+a(dc/da)=0...(iii) (i)&(iii)⇒−a+b+c+b(dc/da)+c(db/da)=0 (iiu)⇒(db/da)[a+c]+b+c=(dc/da)[−a−b] ⇒(db/da)[a+c]+(−(db/da)−(dc/da))_((i)) (b+c)=(dc/da)[−a−b] ⇒(db/da)[a−b]=(dc/da)[c−a]⇒_((i)) −a=b(db/da)+c(dc/da)...(iv) (iv)+(ii)⇒b[(db/da)+(dc/da)]+c[(db/da)+(dc/da)]=((−bc)/a)−a ⇒_((i)) b+c=((bc+a^2 )/a)⇒ab+ac=bc+a^2 ⇒a(13−a)=((36)/a)+a^2 ⇒ a=6 or a=2 at turning point. ⇒(a,b,c)=(6,1,6) ; (2,9,2) at turning point. Checking points ⇒ 40≤ab+bc+ca≤48](https://www.tinkutara.com/question/Q219929.png)
$$\mathrm{For}\:\mathrm{b}=\mathrm{f}\left(\mathrm{a}\right);\:\mathrm{c}=\mathrm{f}\left(\mathrm{a}\right) \\ $$$$\mathrm{a}+\mathrm{b}+\mathrm{c}=\mathrm{13}\:\Rightarrow\:\mathrm{1}+\frac{\mathrm{db}}{\mathrm{da}}+\frac{\mathrm{dc}}{\mathrm{da}}=\mathrm{0}…\left(\mathrm{i}\right) \\ $$$$\mathrm{abc}=\mathrm{36}\Rightarrow\mathrm{c}\left[\mathrm{b}+\mathrm{a}\frac{\mathrm{db}}{\mathrm{da}}\right]+\left[\mathrm{ab}\right]\frac{\mathrm{dc}}{\mathrm{da}}=\mathrm{0}\Rightarrow\left[\mathrm{c}\frac{\mathrm{db}}{\mathrm{da}}+\mathrm{b}\frac{\mathrm{dc}}{\mathrm{da}}\right]=\frac{−\mathrm{bc}}{\mathrm{a}}…\left(\mathrm{ii}\right) \\ $$$$\mathrm{ab}+\mathrm{bc}+\mathrm{ca}\:\mathrm{at}\:\mathrm{turning}\:\mathrm{point}\:\mathrm{when}\: \\ $$$$\mathrm{a}\frac{\mathrm{db}}{\mathrm{da}}+\mathrm{b}+\mathrm{b}\frac{\mathrm{dc}}{\mathrm{da}}+\mathrm{c}\frac{\mathrm{db}}{\mathrm{da}}+\mathrm{c}+\mathrm{a}\frac{\mathrm{dc}}{\mathrm{da}}=\mathrm{0}…\left(\mathrm{iii}\right) \\ $$$$\left(\mathrm{i}\right)\&\left(\mathrm{iii}\right)\Rightarrow−\mathrm{a}+\mathrm{b}+\mathrm{c}+\mathrm{b}\frac{\mathrm{dc}}{\mathrm{da}}+\mathrm{c}\frac{\mathrm{db}}{\mathrm{da}}=\mathrm{0} \\ $$$$\left(\mathrm{iiu}\right)\Rightarrow\frac{\mathrm{db}}{\mathrm{da}}\left[\mathrm{a}+\mathrm{c}\right]+\mathrm{b}+\mathrm{c}=\frac{\mathrm{dc}}{\mathrm{da}}\left[−\mathrm{a}−\mathrm{b}\right] \\ $$$$\Rightarrow\frac{\mathrm{db}}{\mathrm{da}}\left[\mathrm{a}+\mathrm{c}\right]+\left(−\frac{\mathrm{db}}{\mathrm{da}}−\frac{\mathrm{dc}}{\mathrm{da}}\right)_{\left(\mathrm{i}\right)} \left(\mathrm{b}+\mathrm{c}\right)=\frac{\mathrm{dc}}{\mathrm{da}}\left[−\mathrm{a}−\mathrm{b}\right] \\ $$$$\Rightarrow\frac{\mathrm{db}}{\mathrm{da}}\left[\mathrm{a}−\mathrm{b}\right]=\frac{\mathrm{dc}}{\mathrm{da}}\left[\mathrm{c}−\mathrm{a}\right]\Rightarrow_{\left(\mathrm{i}\right)} −\mathrm{a}=\mathrm{b}\frac{\mathrm{db}}{\mathrm{da}}+\mathrm{c}\frac{\mathrm{dc}}{\mathrm{da}}…\left(\mathrm{iv}\right) \\ $$$$\left(\mathrm{iv}\right)+\left(\mathrm{ii}\right)\Rightarrow\mathrm{b}\left[\frac{\mathrm{db}}{\mathrm{da}}+\frac{\mathrm{dc}}{\mathrm{da}}\right]+\mathrm{c}\left[\frac{\mathrm{db}}{\mathrm{da}}+\frac{\mathrm{dc}}{\mathrm{da}}\right]=\frac{−\mathrm{bc}}{\mathrm{a}}−\mathrm{a} \\ $$$$\Rightarrow_{\left(\mathrm{i}\right)} \mathrm{b}+\mathrm{c}=\frac{\mathrm{bc}+\mathrm{a}^{\mathrm{2}} }{\mathrm{a}}\Rightarrow\mathrm{ab}+\mathrm{ac}=\mathrm{bc}+\mathrm{a}^{\mathrm{2}} \\ $$$$\Rightarrow\mathrm{a}\left(\mathrm{13}−\mathrm{a}\right)=\frac{\mathrm{36}}{\mathrm{a}}+\mathrm{a}^{\mathrm{2}} \:\Rightarrow\:\mathrm{a}=\mathrm{6}\:\mathrm{or}\:\mathrm{a}=\mathrm{2}\:\mathrm{at}\:\mathrm{turning}\:\mathrm{point}. \\ $$$$\Rightarrow\left(\mathrm{a},\mathrm{b},\mathrm{c}\right)=\left(\mathrm{6},\mathrm{1},\mathrm{6}\right)\:;\:\left(\mathrm{2},\mathrm{9},\mathrm{2}\right)\:\mathrm{at}\:\mathrm{turning}\:\mathrm{point}. \\ $$$$\mathrm{Checking}\:\mathrm{points}\:\Rightarrow\:\mathrm{40}\leqslant\mathrm{ab}+\mathrm{bc}+\mathrm{ca}\leqslant\mathrm{48} \\ $$
Commented by Rojarani last updated on 03/May/25

$$\:{Sir}\:{thanks}. \\ $$