Question Number 219872 by SdC355 last updated on 03/May/25

$$\mathrm{prove} \\ $$$$\int\:\:{Y}_{−\frac{\mathrm{3}}{\mathrm{2}}} \left({z}\right)\:\mathrm{d}{z}=\frac{\mathrm{4sin}\left({z}\right)+\frac{{z}\boldsymbol{\Gamma}\left(\frac{\mathrm{1}}{\mathrm{2}},−\boldsymbol{{i}}{z}\right)}{\:\sqrt{−\boldsymbol{{i}}{z}}}+\frac{{z}\boldsymbol{\Gamma}\left(\frac{\mathrm{1}}{\mathrm{2}},\boldsymbol{{i}}{z}\right)}{\:\sqrt{\boldsymbol{{i}}{z}}}}{\:\sqrt{\mathrm{2}\pi{z}}}+{C} \\ $$
Answered by MrGaster last updated on 03/May/25

$${Y}_{−\nu} =\left(−\mathrm{1}\right)^{\nu} {Y}_{\nu} \left({z}\right)\Rightarrow{Y}_{−\frac{\mathrm{3}}{\mathrm{2}}} \left({z}\right)=\left(−\mathrm{1}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} {Y}_{\frac{\mathrm{3}}{\mathrm{2}}} ={iY}_{\frac{\mathrm{2}}{\mathrm{3}}} \left({z}\right) \\ $$$${Y}_{\frac{\mathrm{3}}{\mathrm{2}}} \left({z}\right)=−\sqrt{\frac{\mathrm{2}}{\pi{z}}}\left(\frac{\mathrm{cos}\:{z}}{{z}}+\mathrm{sin}\:{z}\right)+\frac{{z}^{\frac{\mathrm{3}}{\mathrm{2}}} }{\:\sqrt{\mathrm{2}\pi}}\left(\Gamma\left(\frac{\mathrm{1}}{\mathrm{2}},{iz}\right)+\Gamma\left(\frac{\mathrm{1}}{\mathrm{2}},−{iz}\right)\right) \\ $$$$\int{Y}_{−\frac{\mathrm{3}}{\mathrm{2}}} \left({z}\right){dz}={i}\int{Y}_{\frac{\mathrm{3}}{\mathrm{2}}} \left({z}\right){dz} \\ $$$$\int{Y}_{−\frac{\mathrm{3}}{\mathrm{2}}} \left({z}\right){dz}=−\sqrt{\frac{\mathrm{2}}{\pi}}\int\frac{\mathrm{cos}\:{z}+\mathrm{sin}\:{z}}{{z}^{\frac{\mathrm{1}}{\mathrm{2}}} }{dz}+\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}\pi}}\int\left(\Gamma\left(\frac{\mathrm{1}}{\mathrm{2}},{iz}\right)+\Gamma\left(\frac{\mathrm{1}}{\mathrm{2}},−{iz}\right)\right) \\ $$$$\int\frac{\mathrm{cos}\:{z}}{{z}^{\frac{\mathrm{3}}{\mathrm{2}}} }{dz}=−\mathrm{2}\frac{\mathrm{sin}\:{z}}{\:\sqrt{{z}}}+\mathrm{2}\sqrt{\pi}\left(\frac{\Gamma\left(\frac{\mathrm{1}}{\mathrm{2}},{iz}\right)}{\:\sqrt{−{iz}}}+\frac{\Gamma\left(\frac{\mathrm{1}}{\mathrm{2}},−{iz}\right)}{\:\sqrt{{iz}}}\right) \\ $$$$\int\frac{\mathrm{sin}\:{z}}{\:\sqrt{{z}}}{dz}=\sqrt{\frac{\pi}{\mathrm{2}}}\left(\mathrm{Si}\left({z}\right)−\mathrm{Ci}\left({z}\right)\right)\Rightarrow\int\frac{\mathrm{sin}\:{z}}{\:\sqrt{{z}}}{dz}=\sqrt{\frac{\mathrm{2}}{\pi}}\left(\frac{\Gamma\left(\frac{\mathrm{1}}{\mathrm{2}},{iz}\right)}{\:\sqrt{{iz}}}−\frac{\Gamma\left(\frac{\mathrm{1}}{\mathrm{2}},−{iz}\right)}{\:\sqrt{−{iz}}}\right) \\ $$$$\int\Gamma\left(\frac{\mathrm{1}}{\mathrm{2}},\pm{iz}\right){z}^{\frac{\mathrm{1}}{\mathrm{2}}} {dz}=\frac{\mathrm{2}}{\mathrm{3}}{z}^{\frac{\mathrm{3}}{\mathrm{2}}} \Gamma\left(\frac{\mathrm{1}}{\mathrm{2}},\pm{iz}\right)\mp\frac{\mathrm{2}{i}}{\mathrm{3}}{z}^{\frac{\mathrm{3}}{\mathrm{2}}} {e}^{\mp{iz}} \\ $$$$\Rightarrow\int\:\:{Y}_{−\frac{\mathrm{3}}{\mathrm{2}}} \left({z}\right)\:\mathrm{d}{z}=\frac{\mathrm{4sin}\left({z}\right)+\frac{{z}\boldsymbol{\Gamma}\left(\frac{\mathrm{1}}{\mathrm{2}},−\boldsymbol{{i}}{z}\right)}{\:\sqrt{−\boldsymbol{{i}}{z}}}+\frac{{z}\boldsymbol{\Gamma}\left(\frac{\mathrm{1}}{\mathrm{2}},\boldsymbol{{i}}{z}\right)}{\:\sqrt{\boldsymbol{{i}}{z}}}}{\:\sqrt{\mathrm{2}\pi{z}}}+{C} \\ $$
Commented by SdC355 last updated on 03/May/25

$$\mathrm{wow}………….\mathrm{thx} \\ $$