Menu Close

what-is-lim-n-1-1-n-a-m-a-a-a-a-m-times-aka-Knuth-s-up-notation-




Question Number 219887 by SdC355 last updated on 03/May/25
what is   lim_(n→∞) (1+(1/n))↑↑^∞ =??  a↑↑^m =a^a^a^a^⋰    _(m times)   (aka Knuth′s up notation)
$$\mathrm{what}\:\mathrm{is}\: \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\left(\mathrm{1}+\frac{\mathrm{1}}{{n}}\right)\uparrow\uparrow^{\infty} =?? \\ $$$${a}\uparrow\uparrow^{{m}} =\underset{{m}\:\mathrm{times}} {\underbrace{{a}^{{a}^{{a}^{{a}^{\iddots} } } } }}\:\:\left(\mathrm{aka}\:\mathrm{Knuth}'\mathrm{s}\:\mathrm{up}\:\mathrm{notation}\right) \\ $$
Answered by MrGaster last updated on 03/May/25
lim_(n→∞) (1+(1/n))↑↑^∞ =1
$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\left(\mathrm{1}+\frac{\mathrm{1}}{{n}}\right)\uparrow\uparrow^{\infty} =\mathrm{1} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *