Menu Close

e-x-2-dx-




Question Number 219970 by Nicholas666 last updated on 04/May/25
                         ∫ e^x^2   dx
$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\int\:{e}^{{x}^{\mathrm{2}} } \:{dx} \\ $$$$ \\ $$
Answered by MATHEMATICSAM last updated on 04/May/25
e^x  = 1 + x + (x^2 /(2!)) + (x^3 /(3!)) + (x^4 /(4!)) + .... ∞  ⇒ e^x  = Σ_(n = 0) ^∞  (x^n /(n!))  e^x^2   = Σ_(n = 0) ^∞  (x^(2n) /(n!))  ⇒ ∫e^x^2   dx = Σ_(n = 0) ^∞  (x^(2n + 1) /((2n + 1)n!)) + C
$${e}^{{x}} \:=\:\mathrm{1}\:+\:{x}\:+\:\frac{{x}^{\mathrm{2}} }{\mathrm{2}!}\:+\:\frac{{x}^{\mathrm{3}} }{\mathrm{3}!}\:+\:\frac{{x}^{\mathrm{4}} }{\mathrm{4}!}\:+\:….\:\infty \\ $$$$\Rightarrow\:{e}^{{x}} \:=\:\underset{{n}\:=\:\mathrm{0}} {\overset{\infty} {\sum}}\:\frac{{x}^{{n}} }{{n}!} \\ $$$${e}^{{x}^{\mathrm{2}} } \:=\:\underset{{n}\:=\:\mathrm{0}} {\overset{\infty} {\sum}}\:\frac{{x}^{\mathrm{2}{n}} }{{n}!} \\ $$$$\Rightarrow\:\int{e}^{{x}^{\mathrm{2}} } \:{dx}\:=\:\underset{{n}\:=\:\mathrm{0}} {\overset{\infty} {\sum}}\:\frac{{x}^{\mathrm{2}{n}\:+\:\mathrm{1}} }{\left(\mathrm{2}{n}\:+\:\mathrm{1}\right){n}!}\:+\:\mathrm{C}\: \\ $$
Answered by MrGaster last updated on 04/May/25
(1):∫e^x^2  =∫Σ_(n=0) ^∞ (x^(2n) /(n!))dx  Σ_(n=0) ^∞ (1/(n!))∫x^(2n) dx  Σ_(n=0) ^∞ (1/(n!))∙(x^(2n−1) /(2n+1))+C  ∫e^x^2  dx=∫Σ_(n=0) ^∞ (x^(2n+1) /(n!(2n+1)))+C  (2):∫e^x^2  =((√π)/2)erfi(x)+C
$$\left(\mathrm{1}\right):\int{e}^{{x}^{\mathrm{2}} } =\int\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{{x}^{\mathrm{2}{n}} }{{n}!}{dx} \\ $$$$\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}!}\int{x}^{\mathrm{2}{n}} {dx} \\ $$$$\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}!}\centerdot\frac{{x}^{\mathrm{2}{n}−\mathrm{1}} }{\mathrm{2}{n}+\mathrm{1}}+{C} \\ $$$$\int{e}^{{x}^{\mathrm{2}} } {dx}=\int\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{{x}^{\mathrm{2}{n}+\mathrm{1}} }{{n}!\left(\mathrm{2}{n}+\mathrm{1}\right)}+{C} \\ $$$$\left(\mathrm{2}\right):\int{e}^{{x}^{\mathrm{2}} } =\frac{\sqrt{\pi}}{\mathrm{2}}\mathrm{erfi}\left({x}\right)+{C} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *