Menu Close

If-f-a-b-1-a-b-R-a-b-f-continuous-Then-prove-that-a-b-1-f-x-dx-3-b-a-3-3-b-a-2-a-b-f-x-dx-




Question Number 220020 by hardmath last updated on 04/May/25
If   f:[a,b]→[−1,∞)         a,b∈R         a ≤ b         f-continuous  Then prove that:  (∫_a ^( b)  (1+f(x))dx)^3 ≥ (b−a)^3 + 3(b−a)^2  ∫_a ^( b) f(x)dx
$$\mathrm{If}\:\:\:\mathrm{f}:\left[\mathrm{a},\mathrm{b}\right]\rightarrow\left[−\mathrm{1},\infty\right) \\ $$$$\:\:\:\:\:\:\:\mathrm{a},\mathrm{b}\in\mathbb{R} \\ $$$$\:\:\:\:\:\:\:\mathrm{a}\:\leqslant\:\mathrm{b} \\ $$$$\:\:\:\:\:\:\:\mathrm{f}-\mathrm{continuous} \\ $$$$\mathrm{Then}\:\mathrm{prove}\:\mathrm{that}: \\ $$$$\left(\int_{\boldsymbol{\mathrm{a}}} ^{\:\boldsymbol{\mathrm{b}}} \:\left(\mathrm{1}+\mathrm{f}\left(\mathrm{x}\right)\right)\mathrm{dx}\right)^{\mathrm{3}} \geqslant\:\left(\mathrm{b}−\mathrm{a}\right)^{\mathrm{3}} +\:\mathrm{3}\left(\mathrm{b}−\mathrm{a}\right)^{\mathrm{2}} \:\int_{\boldsymbol{\mathrm{a}}} ^{\:\boldsymbol{\mathrm{b}}} \mathrm{f}\left(\mathrm{x}\right)\mathrm{dx} \\ $$
Answered by MrGaster last updated on 04/May/25
Commented by MrGaster last updated on 04/May/25
Solution (1)
Answered by MrGaster last updated on 04/May/25
Commented by MrGaster last updated on 04/May/25
Solution(2)
Commented by hardmath last updated on 04/May/25
  One of the perfect solutions as always, thank you very much, my precious magical mathematician, you are great
$$ \\ $$One of the perfect solutions as always, thank you very much, my precious magical mathematician, you are great

Leave a Reply

Your email address will not be published. Required fields are marked *