Menu Close

Let-be-H-n-n-1-H-n-k-1-n-1-k-Find-lim-n-e-2H-n-n-1-1-n-1-n-1-n-sin-pi-n-2-




Question Number 220069 by hardmath last updated on 04/May/25
Let be   (H_n )_(n≥1)                     H_n  = Σ_(k=1) ^n  (1/k)  Find:   lim_(n→∞)  e^(2H_n )  ((((n+1)!))^(1/(n+1))  − ((n!))^(1/n)  ) sin (π/n^2 ) = ?
$$\mathrm{Let}\:\mathrm{be}\:\:\:\left(\mathrm{H}_{\boldsymbol{\mathrm{n}}} \right)_{\boldsymbol{\mathrm{n}}\geqslant\mathrm{1}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{H}_{\boldsymbol{\mathrm{n}}} \:=\:\underset{\boldsymbol{\mathrm{k}}=\mathrm{1}} {\overset{\boldsymbol{\mathrm{n}}} {\sum}}\:\frac{\mathrm{1}}{\mathrm{k}} \\ $$$$\mathrm{Find}:\:\:\:\underset{\boldsymbol{\mathrm{n}}\rightarrow\infty} {\mathrm{lim}}\:\mathrm{e}^{\mathrm{2}\boldsymbol{\mathrm{H}}_{\boldsymbol{\mathrm{n}}} } \:\left(\sqrt[{\boldsymbol{\mathrm{n}}+\mathrm{1}}]{\left(\mathrm{n}+\mathrm{1}\right)!}\:−\:\sqrt[{\boldsymbol{\mathrm{n}}}]{\mathrm{n}!}\:\right)\:\mathrm{sin}\:\frac{\pi}{\mathrm{n}^{\mathrm{2}} }\:=\:? \\ $$
Answered by MrGaster last updated on 05/May/25
H_n =Σ_(k=1) ^n (1/k)≈ln n+γ  e^(2H_n ) ≈e^2 γn^2   ((n!))^(1/n) ≈(n/e)(1+((ln(2πn))/(2n)))  (((n+1)!))^(1/(n+1)) −((n!))^(1/n) ≈(1/e)+(1/(2en))  sin((π/n^2 ))≈(π/n^2 )  e^(2H_n ) ((((n+1)!))^(1/(n+1)) −((n!))^(1/n) )sin((π/n^2 ))≈e^2 γn^2 ∙(1/e)∙(π^2 /n^2 )=e^(2γ−1) π
$${H}_{{n}} =\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{\mathrm{1}}{{k}}\approx\mathrm{ln}\:{n}+\gamma \\ $$$${e}^{\mathrm{2}{H}_{{n}} } \approx{e}^{\mathrm{2}} \gamma{n}^{\mathrm{2}} \\ $$$$\sqrt[{{n}}]{{n}!}\approx\frac{{n}}{{e}}\left(\mathrm{1}+\frac{\mathrm{ln}\left(\mathrm{2}\pi{n}\right)}{\mathrm{2}{n}}\right) \\ $$$$\sqrt[{{n}+\mathrm{1}}]{\left({n}+\mathrm{1}\right)!}−\sqrt[{{n}}]{{n}!}\approx\frac{\mathrm{1}}{{e}}+\frac{\mathrm{1}}{\mathrm{2}{en}} \\ $$$$\mathrm{sin}\left(\frac{\pi}{{n}^{\mathrm{2}} }\right)\approx\frac{\pi}{{n}^{\mathrm{2}} } \\ $$$${e}^{\mathrm{2}{H}_{{n}} } \left(\sqrt[{{n}+\mathrm{1}}]{\left({n}+\mathrm{1}\right)!}−\sqrt[{{n}}]{{n}!}\right)\mathrm{sin}\left(\frac{\pi}{{n}^{\mathrm{2}} }\right)\approx{e}^{\mathrm{2}} \gamma{n}^{\mathrm{2}} \centerdot\frac{\mathrm{1}}{{e}}\centerdot\frac{\pi^{\mathrm{2}} }{{n}^{\mathrm{2}} }={e}^{\mathrm{2}\gamma−\mathrm{1}} \pi \\ $$
Commented by hardmath last updated on 05/May/25
  Amazing solution as always, thank you very much my valuable professor
$$ \\ $$Amazing solution as always, thank you very much my valuable professor

Leave a Reply

Your email address will not be published. Required fields are marked *