Question Number 220065 by Nicholas666 last updated on 04/May/25

$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\alpha\in\mathbb{R}\:\:\:;\:\:\:\:\omega\in\mathbb{R}^{+} \\ $$$$\:\:\:\:\:{I}\left(\alpha\right)\:=\:\int_{−\infty} ^{\:\infty} \:\frac{{x}^{\mathrm{2}} \:\mathrm{ln}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}{\left({x}^{\mathrm{4}} +\mathrm{1}\right)^{\alpha} }\:{e}^{−{x}^{\mathrm{2}} } \:\mathrm{cos}\left(\omega{x}\right)\:{dx} \\ $$$$ \\ $$
Answered by MrGaster last updated on 04/May/25

$$\mathrm{I}\:\mathrm{have}\:\mathrm{derived}\:\mathrm{three}\:\mathrm{resultsu} \\ $$$$\mathrm{bt}\:\mathrm{I}\:\mathrm{am}\:\mathrm{not}\:\mathrm{sure}\:\mathrm{which}\:\mathrm{one}\:\mathrm{isc} \\ $$$$\mathrm{correct}\:\left(\mathrm{you}\:\mathrm{can}\:\mathrm{verify}\:\mathrm{itr}\right. \\ $$$$\left.\mathrm{late}\right). \\ $$$$\left(\mathrm{1}\right):\Rightarrow{I}\left(\alpha\right)=\mathrm{2}\int_{\mathrm{0}} ^{\infty} \frac{{x}^{\mathrm{2}} \mathrm{ln}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}{\left({x}^{\mathrm{4}} +\mathrm{1}\right)^{\alpha} }{e}^{−{x}^{\mathrm{2}} } \mathrm{cos}\left(\omega{x}\right){dx} \\ $$$$\mathrm{ln}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}^{\mathrm{2}} }{\mathrm{1}+{x}^{\mathrm{2}} {t}}{dt} \\ $$$$\Rightarrow{I}\left(\alpha\right)=\mathrm{2}\int_{\mathrm{0}} ^{\mathrm{1}} \int_{\mathrm{0}\:} ^{\infty} \frac{{x}^{\mathrm{4}} }{\left({x}^{\mathrm{4}} +\mathrm{1}\right)\left(\mathrm{1}+{x}^{\mathrm{2}} {t}\right)}{e}^{−{x}^{\mathrm{2}} } \mathrm{cos}\left(\omega{x}\right) \\ $$$$\left({x}^{\mathrm{4}} +\mathrm{1}\right)^{−\alpha} =\frac{\mathrm{1}}{\Gamma\left(\alpha\right)}\int_{\mathrm{0}} ^{\infty} {s}^{\alpha−\mathrm{1}} {e}^{−\left({x}^{\mathrm{4}} +\mathrm{1}\right){s}} {ds} \\ $$$$\Rightarrow{I}\left(\alpha\right)=\frac{\mathrm{2}}{\Gamma\left(\alpha\right)}\int_{\mathrm{0}} ^{\mathrm{1}} \int_{\mathrm{0}\:} ^{\infty} {s}^{\alpha−\mathrm{1}} {e}^{−{s}} \int_{\mathrm{0}} ^{\infty} \frac{{x}^{\mathrm{4}} {e}^{−{x}^{\mathrm{2}} \left(\mathrm{1}+{sx}^{\mathrm{2}} \right)} }{\mathrm{1}+{x}^{\mathrm{2}} {t}}\mathrm{cos}\left(\omega{x}\right){dx}\:{ds}\:{dt} \\ $$$$\int_{\mathrm{0}} ^{\infty} {x}^{\mathrm{4}} {e}^{−{x}^{\mathrm{2}} \left(\mathrm{1}+{sx}^{\mathrm{2}} \right)} \mathrm{cos}\left(\omega{x}\right){dx}=\frac{\sqrt{\pi}}{\mathrm{4}}\:\frac{\partial^{\mathrm{2}} }{\partial\lambda^{\mathrm{2}} }\left(\frac{{e}^{−\frac{\omega^{\mathrm{2}} }{\mathrm{4}\left(\mathrm{1}+{sx}^{\mathrm{2}} +\lambda\right)}} }{\:\sqrt{\mathrm{1}+{sx}^{\mathrm{2}} +\lambda}}\right)\mid_{\lambda=\mathrm{0}} \\ $$$$\Rightarrow{I}\left(\alpha\right)=\frac{\sqrt{\pi}}{\mathrm{2}\Gamma\left(\alpha\right)}\:\frac{\partial^{\mathrm{2}} }{\partial\lambda^{\mathrm{2}} }\left({e}^{−\frac{\omega^{\mathrm{2}} }{\mathrm{4}\left(\mathrm{1}+\lambda\right)}} \int_{\mathrm{0}} ^{\infty} \frac{{s}^{\alpha−\mathrm{1}} {e}^{−{s}} }{\:\sqrt{\mathrm{1}+{s}+\lambda}\left(\mathrm{1}+{t}\left(\mathrm{1}+{s}+\lambda\right)\right)}{ds}=\frac{\Gamma\left(\alpha\right)}{\left(\mathrm{1}+{t}\right)^{\alpha} \sqrt{\mathrm{1}+{t}}}\:_{\mathrm{2}} {F}_{\mathrm{1}} \left(\alpha,\frac{\mathrm{1}}{\mathrm{2}};\alpha+\frac{\mathrm{1}}{\mathrm{2}};\frac{{t}}{\mathrm{1}+{t}}\right)\right. \\ $$$${I}\left(\alpha\right)=\frac{\sqrt{\pi}}{\mathrm{2}}\:\frac{\partial^{\mathrm{2}} }{\partial\lambda^{\mathrm{2}} }\left(\frac{{e}^{−\frac{\omega^{\mathrm{2}} }{\mathrm{4}\left(\mathrm{1}−\lambda\right)}} }{\:\sqrt{\mathrm{1}+\lambda}}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}}{\left(\mathrm{1}+{t}\right)^{\alpha} }\:_{\mathrm{2}} {F}_{\mathrm{1}} \left(\alpha,\frac{\mathrm{1}}{\mathrm{2}};\alpha+\frac{\mathrm{1}}{\mathrm{2}};\frac{{t}}{\mathrm{1}+{t}}\right){dt}\right)\mid_{\lambda=\mathrm{0}} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\:_{\mathrm{2}} {F}_{\mathrm{1}} \left(\alpha,\frac{\mathrm{1}}{\mathrm{2}};\alpha+\frac{\mathrm{1}}{\mathrm{2}};\frac{{t}}{\mathrm{1}+{t}}\right)}{\left(\mathrm{1}+{t}\right)^{\alpha} }{dt}=\frac{\sqrt{\pi}\Gamma\left(\alpha+\frac{\mathrm{1}}{\mathrm{2}}\right)}{\Gamma\left(\alpha+\mathrm{1}\right)} \\ $$$$\Rightarrow{I}\left(\alpha\right)=\frac{\pi}{\mathrm{2}\Gamma\left(\alpha+\mathrm{1}\right)}\:\frac{\partial^{\mathrm{2}} }{\partial\lambda^{\mathrm{2}} }\left(\frac{{e}^{−\frac{\omega^{\mathrm{2}} }{\mathrm{4}\left(\mathrm{1}+\lambda\right)}} }{\:\sqrt{\mathrm{1}+\lambda}}\Gamma\left(\alpha+\frac{\mathrm{1}}{\mathrm{2}}\right)\right)\mid_{\lambda=\mathrm{0}} \\ $$$$\Rightarrow{I}\left(\alpha\right)=\frac{\pi^{\mathrm{3}/\mathrm{2}} \Gamma\left(\alpha+\frac{\mathrm{1}}{\mathrm{2}}\right)}{\mathrm{2}\Gamma\left(\alpha+\mathrm{1}\right)}\left(\frac{\omega^{\mathrm{4}} }{\mathrm{4}}{e}^{−\frac{\omega^{\mathrm{2}} }{\mathrm{4}}} +\frac{\mathrm{1}}{\mathrm{2}}{e}^{−\frac{\omega^{\mathrm{2}} }{\mathrm{4}}} \right) \\ $$$${I}\left(\alpha\right)=\frac{\pi^{\mathrm{3}/\mathrm{2}} \Gamma\left(\alpha+\frac{\mathrm{1}}{\mathrm{2}}\right)}{\mathrm{4}\Gamma\left(\alpha+\mathrm{1}\right)}\left(\omega^{\mathrm{3}} +\mathrm{2}\right){e}^{−\frac{\omega^{\mathrm{2}} }{{t}}} \\ $$$$\left(\mathrm{2}\right):\mathrm{ln}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}^{\mathrm{2}} }{\mathrm{1}+{tx}^{\mathrm{2}} }{dt} \\ $$$${I}\left(\alpha\right)=\mathrm{2}\int_{\mathrm{0}} ^{\mathrm{1}} \int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}^{\mathrm{4}} {e}^{−{x}^{\mathrm{2}} } \mathrm{cos}\left(\omega{x}\right)}{\left({x}^{\mathrm{4}} +\mathrm{1}\right)^{\alpha} \left(\mathrm{1}+{tx}^{\mathrm{2}} \right)}{dx}\:{dt} \\ $$$$\mathrm{cos}\left(\omega{x}\right)=\underset{{k}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{k}} \omega^{\mathrm{2}{k}} {x}^{\mathrm{2}{k}} }{\left(\mathrm{2}{k}\right)!} \\ $$$${I}\left(\alpha\right)=\mathrm{2}\underset{{k}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{k}} \omega^{\mathrm{2}{k}} }{\left(\mathrm{2}{k}\right)!}\int_{\mathrm{0}} ^{\mathrm{1}} \int_{\mathrm{0}} ^{\infty} \frac{{x}^{\mathrm{4}+\mathrm{2}{k}} {e}^{−{x}^{\mathrm{2}} } }{\left({x}^{\mathrm{4}} +\mathrm{1}\right)^{\alpha} \left(\mathrm{1}+{tx}^{\mathrm{2}} \right)}{dx}\:{dt} \\ $$$$\mathrm{Let}\:{x}^{\mathrm{2}} ={y}\Rightarrow:{I}\left(\alpha\right)=\underset{{k}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{k}} \omega^{\mathrm{2}{k}} }{\left(\mathrm{2}{k}\right)!}\int_{\mathrm{0}} ^{\mathrm{1}} \int_{\mathrm{0}} ^{\infty} \frac{{y}^{{k}+\mathrm{3}/\mathrm{2}} {e}^{−{y}} }{\left({y}^{\mathrm{2}} +\mathrm{1}\right)^{\alpha} \left(\mathrm{1}+{ty}\right)}{dy}\:{dt} \\ $$$$\int_{\mathrm{0}} ^{\infty} \frac{{y}^{{k}+\mathrm{3}/\mathrm{2}} {e}^{−{y}} }{\left({y}^{\mathrm{2}} +\mathrm{1}\right)^{\alpha} }{dy}=\frac{\mathrm{1}}{\mathrm{2}}\Gamma\left({k}+\frac{\mathrm{3}}{\mathrm{2}}\right)\:_{\mathrm{1}} {F}_{\mathrm{1}} \left({k}+\frac{\mathrm{3}}{\mathrm{2}};\frac{\mathrm{1}}{\mathrm{2}};\frac{\mathrm{1}}{\mathrm{4}}\right) \\ $$$${I}\left(\alpha\right)=\frac{\mathrm{1}}{\mathrm{2}}\underset{{k}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{k}} \omega^{\mathrm{2}{k}} \Gamma\left({k}+\frac{\mathrm{3}}{\mathrm{2}}\right)}{\left(\mathrm{2}{k}\right)!}\int_{\mathrm{0}} ^{\mathrm{1}} \:_{\mathrm{2}} {F}_{\mathrm{1}} \left(\mathrm{1},{k}+\frac{\mathrm{3}}{\mathrm{2}};\frac{\mathrm{1}}{\mathrm{2}};−{t}\right){dt} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \:_{\mathrm{2}} {F}_{\mathrm{1}} \left(\mathrm{1},{k}+\frac{\mathrm{3}}{\mathrm{2}};\frac{\mathrm{1}}{\mathrm{2}};−{t}\right){dt}=\frac{\mathrm{2}}{\mathrm{2}{k}+\mathrm{1}}\left(\mathrm{1}−\:_{\mathrm{2}} {F}_{\mathrm{1}} \left(\mathrm{1},{k}+\frac{\mathrm{3}}{\mathrm{2}};\frac{\mathrm{3}}{\mathrm{2}};−\mathrm{1}\right)\right) \\ $$$$\:_{\mathrm{2}} {F}_{\mathrm{1}\:} \left(\mathrm{1},{k}+\frac{\mathrm{3}}{\mathrm{2}};\frac{\mathrm{3}}{\mathrm{2}};−\mathrm{1}\right)=\frac{\sqrt{\pi}\Gamma\left({k}+\mathrm{1}\right)}{\mathrm{2}^{\mathrm{2}{k}+\mathrm{1}} \:\Gamma\left({k}+\frac{\mathrm{3}}{\mathrm{2}}\right)} \\ $$$${I}\left(\alpha\right)=\frac{\sqrt{\pi}}{\mathrm{2}}\underset{{k}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{k}} \omega^{\mathrm{2}{k}} \Gamma\left({k}+\mathrm{1}\right)}{\mathrm{2}^{\mathrm{2}{k}+\mathrm{1}} \left(\mathrm{2}{k}\right)!}\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{2}{k}+\mathrm{1}} }\right) \\ $$$$\Gamma\left({k}+\mathrm{1}\right)={k}!,\Gamma\left({k}+\frac{\mathrm{3}}{\mathrm{2}}\right)=\frac{\sqrt{\pi}\left(\mathrm{2}{k}+\mathrm{1}\right)!}{\mathrm{4}^{{k}} {k}!} \\ $$$${I}\left(\alpha\right)=\frac{\sqrt{\pi}}{\mathrm{2}^{\mathrm{2}\alpha+\mathrm{1}} }\underset{{k}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{k}} \omega^{\mathrm{2}{k}} \left(\mathrm{2}{k}\right)!}{\left({k}!\right)^{\mathrm{2}} \mathrm{4}^{{k}} }\:_{\mathrm{2}} {F}_{\mathrm{1}} \left(\alpha,\alpha+\frac{\mathrm{1}}{\mathrm{2}};{k}+\frac{\mathrm{3}}{\mathrm{2}};\frac{\mathrm{1}}{\mathrm{4}}\right) \\ $$$$\left(\mathrm{3}\right): \\ $$$${I}\left(\alpha\right)=\frac{\sqrt{\pi}}{\mathrm{2}^{\alpha} \Gamma\left(\alpha\right)}\underset{{k}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{k}} \omega^{\mathrm{2}{k}} }{\left(\mathrm{2}{k}\right)!}\int_{\mathrm{0}} ^{\infty} \frac{{t}^{\alpha−\mathrm{1}} {e}^{−{t}} \Gamma\left({k}+\frac{\mathrm{3}}{\mathrm{2}},{t}\right)}{\Gamma\left({k}+\frac{\mathrm{5}}{\mathrm{2}}\right)}{dt} \\ $$
Answered by SdC355 last updated on 04/May/25

$${I}\left(\alpha\right)=\mathrm{2}\int_{\mathrm{0}} ^{\:\infty} \:\:\frac{{z}^{\mathrm{2}} \mathrm{ln}\left({z}^{\mathrm{2}} +\mathrm{1}\right)}{\left({z}^{\mathrm{2}} +\mathrm{1}\right)^{\alpha} }{e}^{−{z}^{\mathrm{2}} } \mathrm{cos}\left(\omega{z}\right)\:\mathrm{d}{z} \\ $$$$\mathrm{cos}^{\mathrm{2}} \left(\theta\right)+\mathrm{sin}^{\mathrm{2}} \left(\theta\right)=\mathrm{1}\:\rightarrow\:\mathrm{tan}^{\mathrm{2}} \left(\theta\right)+\mathrm{1}=\mathrm{sec}^{\mathrm{2}} \left(\theta\right) \\ $$$${z}=\mathrm{tan}\left(\theta\right) \\ $$$$\frac{\mathrm{d}{z}}{\mathrm{d}\theta}=\mathrm{sec}^{\mathrm{2}} \left(\theta\right)\:\rightarrow\:\mathrm{d}{z}=\mathrm{sec}^{\mathrm{2}} \left(\theta\right)\:\mathrm{d}\theta \\ $$$$\mathrm{4}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\mathrm{tan}^{\mathrm{2}} \left(\theta\right)\mathrm{ln}\left(\mathrm{sec}\left(\theta\right)\right){e}^{−\mathrm{tan}^{\mathrm{2}} \left(\theta\right)} \mathrm{cos}\left(\omega\centerdot\mathrm{tan}\left(\theta\right)\right)\left(\mathrm{cos}\left(\theta\right)\right)^{\mathrm{2}\alpha−\mathrm{2}} \mathrm{d}\theta \\ $$