Menu Close

Let-H-h-p-h-1-p-h-p-h-P-p-1-2-h-1-H-h-h-1-H-h-3-2-5-3-7-5-




Question Number 220121 by SdC355 last updated on 06/May/25
Let H_h =p_(h+1) /p_h  , p_h ∈P , p_1 =2  Π_(h=1) ^∞  H_h =?? (Π_(h=1) ^∞  H_h =(3/2)∙(5/3)∙(7/5).........)
$$\mathrm{Let}\:{H}_{{h}} ={p}_{{h}+\mathrm{1}} /{p}_{{h}} \:,\:{p}_{{h}} \in\mathbb{P}\:,\:{p}_{\mathrm{1}} =\mathrm{2} \\ $$$$\underset{{h}=\mathrm{1}} {\overset{\infty} {\prod}}\:{H}_{{h}} =??\:\left(\underset{{h}=\mathrm{1}} {\overset{\infty} {\prod}}\:{H}_{{h}} =\frac{\mathrm{3}}{\mathrm{2}}\centerdot\frac{\mathrm{5}}{\mathrm{3}}\centerdot\frac{\mathrm{7}}{\mathrm{5}}………\right) \\ $$
Answered by MrGaster last updated on 06/May/25
Π_(h=1) ^∞ (p_(h+1) /p_h )=lim_(n→∞) (p_(n+1) /p_1 )=lim_(n→∞) (p_(n+1) /2)=∞  (2):Π_(h=1) ^∞ H_h =Π_(h=1) ^∞ (p_(h+1) /p_h )=lim_(n→∞) ((p_n +1)/p_1 )=lim_(n→∞) (p_(n+1) /2)  lim_(n→∞) p_(n+1) =∞⇒Π_(h=1) ^∞ H_h =∞
$$\underset{{h}=\mathrm{1}} {\overset{\infty} {\prod}}\frac{{p}_{{h}+\mathrm{1}} }{{p}_{{h}} }=\underset{{n}\rightarrow\infty} {\mathrm{lim}}\frac{{p}_{{n}+\mathrm{1}} }{{p}_{\mathrm{1}} }=\underset{{n}\rightarrow\infty} {\mathrm{lim}}\frac{{p}_{{n}+\mathrm{1}} }{\mathrm{2}}=\infty \\ $$$$\left(\mathrm{2}\right):\underset{{h}=\mathrm{1}} {\overset{\infty} {\prod}}{H}_{{h}} =\underset{{h}=\mathrm{1}} {\overset{\infty} {\prod}}\frac{{p}_{{h}+\mathrm{1}} }{{p}_{{h}} }=\underset{{n}\rightarrow\infty} {\mathrm{lim}}\frac{{p}_{{n}} +\mathrm{1}}{{p}_{\mathrm{1}} }=\underset{{n}\rightarrow\infty} {\mathrm{lim}}\frac{{p}_{{n}+\mathrm{1}} }{\mathrm{2}} \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}{p}_{{n}+\mathrm{1}} =\infty\Rightarrow\underset{{h}=\mathrm{1}} {\overset{\infty} {\prod}}{H}_{{h}} =\infty \\ $$
Commented by SdC355 last updated on 06/May/25
why product  Π_(l=1) ^N  (p_(l+1) /p_l ) isn′t (1/2)....?  (p_2 /p_1 )∙(p_3 /p_2 )∙(p_4 /p_3 )∙..........=(1/p_1 )=(1/2) , p_n ∈P(Set of prime Number)
$$\mathrm{why}\:\mathrm{product}\:\:\underset{\mathrm{l}=\mathrm{1}} {\overset{{N}} {\prod}}\:\frac{{p}_{{l}+\mathrm{1}} }{{p}_{{l}} }\:\mathrm{isn}'\mathrm{t}\:\frac{\mathrm{1}}{\mathrm{2}}….? \\ $$$$\frac{\cancel{\mathrm{p}_{\mathrm{2}} }}{\mathrm{p}_{\mathrm{1}} }\centerdot\frac{\cancel{\mathrm{p}_{\mathrm{3}} }}{\cancel{\mathrm{p}_{\mathrm{2}} }}\centerdot\frac{\cancel{\mathrm{p}_{\mathrm{4}} }}{\cancel{\mathrm{p}_{\mathrm{3}} }}\centerdot……….=\frac{\mathrm{1}}{\mathrm{p}_{\mathrm{1}} }=\frac{\mathrm{1}}{\mathrm{2}}\:,\:\mathrm{p}_{{n}} \in\mathbb{P}\left(\mathrm{Set}\:\mathrm{of}\:\mathrm{prime}\:\mathrm{Number}\right) \\ $$
Commented by MrGaster last updated on 06/May/25
Commented by mr W last updated on 06/May/25
Π_(n=1) ^∞ (p_(n+1) /p_n )=(3/2)×(5/3)×...×(p_(n+1) /p_n )×...=∞  Π_(n=1) ^∞ (p_n /p_(n+1) )=(2/3)×(3/5)×...×(p_n /p_(n+1) )×...=0
$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\prod}}\frac{{p}_{{n}+\mathrm{1}} }{{p}_{{n}} }=\frac{\cancel{\mathrm{3}}}{\mathrm{2}}×\frac{\cancel{\mathrm{5}}}{\cancel{\mathrm{3}}}×…×\frac{{p}_{{n}+\mathrm{1}} }{\cancel{{p}_{{n}} }}×…=\infty \\ $$$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\prod}}\frac{{p}_{{n}} }{{p}_{{n}+\mathrm{1}} }=\frac{\mathrm{2}}{\cancel{\mathrm{3}}}×\frac{\cancel{\mathrm{3}}}{\cancel{\mathrm{5}}}×…×\frac{\cancel{{p}_{{n}} }}{{p}_{{n}+\mathrm{1}} }×…=\mathrm{0} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *