Question Number 220269 by SdC355 last updated on 10/May/25

$$\underset{{t}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\:\frac{{C}_{\mathrm{1}} {J}_{\nu} \left({t}\right)+{C}_{\mathrm{2}} {Y}_{\nu} \left({t}\right)+\boldsymbol{\mathrm{H}}_{\nu} \left({t}\right)}{{C}_{\mathrm{1}} {J}_{\nu} \left({t}\right)+{C}_{\mathrm{2}} {Y}_{\nu} \left({t}\right)}=?? \\ $$$$\nu\in\mathbb{R} \\ $$$${J}_{\nu} \left({z}\right)\:\mathrm{Bessel}\:\mathrm{function}\:\mathrm{First}\:\mathrm{kind} \\ $$$${Y}_{\nu} \left({z}\right)\:\mathrm{Bessel}\:\mathrm{function}\:\mathrm{Second}\:\mathrm{Kind} \\ $$$$\boldsymbol{\mathrm{H}}_{\nu} \left({z}\right)\:\mathrm{Struve}\:\mathrm{H}\:\mathrm{function} \\ $$
Answered by MrGaster last updated on 10/May/25

$$\mathrm{lim}_{{t}\rightarrow\mathrm{0}} \:\:\frac{{C}_{\mathrm{1}} {J}_{\nu} \left({t}\right)+{C}_{\mathrm{2}} {Y}_{\nu} \left({t}\right)+\boldsymbol{\mathrm{H}}_{\nu} \left({t}\right)}{{C}_{\mathrm{1}} {J}_{\nu} \left({t}\right)+{C}_{\mathrm{2}} {Y}_{\nu} \left({t}\right)}=\underset{{t}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{C}_{\mathrm{1}} \frac{{t}^{\nu} }{\mathrm{2}^{\nu} \Gamma\left(\nu+\mathrm{1}\right)}+{C}_{\mathrm{2}} \left(−\frac{\Gamma\left(\nu\right){t}^{−\nu} }{\mathrm{2}}\right)+\frac{{t}^{\nu+\mathrm{1}} }{\mathrm{2}^{\nu} \Gamma\left(\nu+\frac{\mathrm{3}}{\mathrm{2}}\right)}}{{C}_{\mathrm{1}} \frac{{t}^{\nu} }{\mathrm{2}^{\nu} \Gamma\left(\nu+\mathrm{1}\right)}+{C}_{\mathrm{2}} \left(−\frac{\Gamma\left(\nu\right){t}^{−\nu} }{\mathrm{2}}\right)} \\ $$$$=\underset{{t}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{C}_{\mathrm{1}} −\frac{{C}_{\mathrm{2}} \Gamma\left(\nu\right){t}^{−\nu} }{\mathrm{2}}+\frac{{t}^{\nu+\mathrm{1}} }{\mathrm{2}^{\nu} \Gamma\left(\nu+\frac{\mathrm{3}}{\mathrm{2}}\right)}}{{C}_{\mathrm{1}} {t}^{\nu} −\frac{{C}_{\mathrm{2}} \Gamma\left(\nu\right){t}^{−\nu} }{\mathrm{2}}}=\underset{{t}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\mathrm{1}+\frac{{t}^{\nu+\mathrm{1}} }{\frac{\mathrm{2}^{\nu} \Gamma\left(\nu+\frac{\mathrm{3}}{\mathrm{2}}\right)}{{C}_{\mathrm{1}} {t}^{\nu} −\frac{{C}_{\mathrm{2}} \Gamma\left(\nu\right){t}^{−\nu} }{\mathrm{2}}}}\right)=\mathrm{1} \\ $$
Commented by SdC355 last updated on 10/May/25

$$\mathrm{Goood} \\ $$