Question Number 220307 by Tawa11 last updated on 10/May/25

Answered by fantastic last updated on 10/May/25

Commented by fantastic last updated on 10/May/25

$${Here}\:\Box{ABCD}\:={DC}×{AN}\:.{As}\:{the}\:{opposite}\:{sides}\:{of}\:{a}\:{parallelogram}\:{is}\:{equal}\:{so}\:{AB}={DC} \\ $$$${so}\:{DC}×{AN}=\mathrm{6}.\mathrm{3}×\mathrm{4}.\mathrm{2}=\mathrm{26}.\mathrm{46}\:{cm}^{\mathrm{2}} \\ $$$${But}\:{AM}×{BC}\:{is}\:{also}\:{the}\:{area} \\ $$$$\Box{ABCD}\:={AM}×\mathrm{4}.\mathrm{9}{cm}^{\mathrm{2}} \\ $$$${so}\:{AM}×\mathrm{4}.\mathrm{9}\:=\mathrm{26}.\mathrm{46} \\ $$$${or},{AM}=\frac{\mathrm{26}.\mathrm{46}}{\mathrm{4}.\mathrm{9}}=\mathrm{5}.\mathrm{4}{cm} \\ $$$${ANSWER}:\:{AREA}=\mathrm{26}.\mathrm{46}\:{cm}^{\mathrm{2}} \:,{AM}=\mathrm{5}.\mathrm{4}\:{cm} \\ $$
Commented by Tawa11 last updated on 11/May/25

$$\mathrm{Thanks}\:\mathrm{sir},\:\mathrm{I}\:\mathrm{appreciate}. \\ $$
Commented by Tawa11 last updated on 11/May/25

$$\mathrm{Thanks}\:\mathrm{sir}. \\ $$$$\mathrm{I}\:\mathrm{really}\:\mathrm{appreciate}. \\ $$