Menu Close

Question-220375




Question Number 220375 by Tawa11 last updated on 12/May/25
Commented by Tawa11 last updated on 12/May/25
Find the area and perimeter.  Please, is the question correct?
$$\mathrm{Find}\:\mathrm{the}\:\mathrm{area}\:\mathrm{and}\:\mathrm{perimeter}. \\ $$$$\mathrm{Please},\:\mathrm{is}\:\mathrm{the}\:\mathrm{question}\:\mathrm{correct}? \\ $$
Commented by AntonCWX8 last updated on 12/May/25
The triangle looks equilateral...
$${The}\:{triangle}\:{looks}\:{equilateral}… \\ $$
Answered by AntonCWX8 last updated on 12/May/25
I assume the triangle is equilateral  Area=(1/2)(12^2 )(sin(60°))+30(12)+((1/2))(π)(((12)/2))^2   Area=36(√3)+360+18π≈478.9025cm^2
$${I}\:{assume}\:{the}\:{triangle}\:{is}\:{equilateral} \\ $$$${Area}=\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{12}^{\mathrm{2}} \right)\left({sin}\left(\mathrm{60}°\right)\right)+\mathrm{30}\left(\mathrm{12}\right)+\left(\frac{\mathrm{1}}{\mathrm{2}}\right)\left(\pi\right)\left(\frac{\mathrm{12}}{\mathrm{2}}\right)^{\mathrm{2}} \\ $$$${Area}=\mathrm{36}\sqrt{\mathrm{3}}+\mathrm{360}+\mathrm{18}\pi\approx\mathrm{478}.\mathrm{9025}{cm}^{\mathrm{2}} \\ $$
Commented by Tawa11 last updated on 12/May/25
Thanks sir.  I really appreciate.
$$\mathrm{Thanks}\:\mathrm{sir}. \\ $$$$\mathrm{I}\:\mathrm{really}\:\mathrm{appreciate}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *