Menu Close

Question-220391




Question Number 220391 by Lekhraj last updated on 12/May/25
Answered by MathematicalUser2357 last updated on 13/May/25
yes
$${yes} \\ $$
Answered by Rasheed.Sindhi last updated on 12/May/25
((2x−1)/(x+1))=y⇒2x−1=xy+y  2x−xy=y+1  x(2−y)=y+1  x=((y+1)/(2−y))  f(((2x−1)/(x+1)))=((3x)/(2x+2))  ⇒f(y)=((3(((y+1)/(2−y))))/(2(((y+1)/(2−y)))+2))               =((3y+3)/(2y+2+4−2y))               =((3(y+1))/6)                =((y+1)/2)  f(x)=((x+1)/2)
$$\frac{\mathrm{2}{x}−\mathrm{1}}{{x}+\mathrm{1}}={y}\Rightarrow\mathrm{2}{x}−\mathrm{1}={xy}+{y} \\ $$$$\mathrm{2}{x}−{xy}={y}+\mathrm{1} \\ $$$${x}\left(\mathrm{2}−{y}\right)={y}+\mathrm{1} \\ $$$${x}=\frac{{y}+\mathrm{1}}{\mathrm{2}−{y}} \\ $$$${f}\left(\frac{\mathrm{2}{x}−\mathrm{1}}{{x}+\mathrm{1}}\right)=\frac{\mathrm{3}{x}}{\mathrm{2}{x}+\mathrm{2}} \\ $$$$\Rightarrow{f}\left({y}\right)=\frac{\mathrm{3}\left(\frac{{y}+\mathrm{1}}{\mathrm{2}−{y}}\right)}{\mathrm{2}\left(\frac{{y}+\mathrm{1}}{\mathrm{2}−{y}}\right)+\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:=\frac{\mathrm{3}{y}+\mathrm{3}}{\mathrm{2}{y}+\mathrm{2}+\mathrm{4}−\mathrm{2}{y}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:=\frac{\mathrm{3}\left({y}+\mathrm{1}\right)}{\mathrm{6}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\frac{{y}+\mathrm{1}}{\mathrm{2}} \\ $$$${f}\left({x}\right)=\frac{{x}+\mathrm{1}}{\mathrm{2}} \\ $$
Commented by Lekhraj last updated on 12/May/25
Thank you
$$\mathrm{Thank}\:\mathrm{you} \\ $$
Answered by Ghisom last updated on 12/May/25
the question is  “can you solve f(((2x−1)/(x+1)))=((3x)/(2x+2))?”  ⇒ the correct answer (at least for me) is  yes
$$\mathrm{the}\:\mathrm{question}\:\mathrm{is} \\ $$$$“\mathrm{can}\:\mathrm{you}\:\mathrm{solve}\:{f}\left(\frac{\mathrm{2}{x}−\mathrm{1}}{{x}+\mathrm{1}}\right)=\frac{\mathrm{3}{x}}{\mathrm{2}{x}+\mathrm{2}}?'' \\ $$$$\Rightarrow\:\mathrm{the}\:\mathrm{correct}\:\mathrm{answer}\:\left(\mathrm{at}\:\mathrm{least}\:\mathrm{for}\:\mathrm{me}\right)\:\mathrm{is} \\ $$$$\mathrm{yes} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *