Menu Close

sin-sin-pi-sin-2pi-sin-npi-when-n-is-an-odd-integer-




Question Number 220390 by MATHEMATICSAM last updated on 12/May/25
sinθ + sin(π + θ) + sin(2π + θ) + ...   + sin(nπ + θ) = ? when n is an odd  integer.
$$\mathrm{sin}\theta\:+\:\mathrm{sin}\left(\pi\:+\:\theta\right)\:+\:\mathrm{sin}\left(\mathrm{2}\pi\:+\:\theta\right)\:+\:…\: \\ $$$$+\:\mathrm{sin}\left({n}\pi\:+\:\theta\right)\:=\:?\:\mathrm{when}\:{n}\:\mathrm{is}\:\mathrm{an}\:\mathrm{odd} \\ $$$$\mathrm{integer}. \\ $$
Answered by mr W last updated on 12/May/25
sin (kπ+θ)=sin kπ cos θ+cos kπ sin θ       =(−1)^k  sin θ  sin θ+sin (π+θ)+sin (2π+θ)+...+sin (nπ+θ)  =sin θ−sin θ+sin θ−sin θ+...−sin θ  =0
$$\mathrm{sin}\:\left({k}\pi+\theta\right)=\mathrm{sin}\:{k}\pi\:\mathrm{cos}\:\theta+\mathrm{cos}\:{k}\pi\:\mathrm{sin}\:\theta \\ $$$$\:\:\:\:\:=\left(−\mathrm{1}\right)^{{k}} \:\mathrm{sin}\:\theta \\ $$$$\mathrm{sin}\:\theta+\mathrm{sin}\:\left(\pi+\theta\right)+\mathrm{sin}\:\left(\mathrm{2}\pi+\theta\right)+…+\mathrm{sin}\:\left({n}\pi+\theta\right) \\ $$$$=\mathrm{sin}\:\theta−\mathrm{sin}\:\theta+\mathrm{sin}\:\theta−\mathrm{sin}\:\theta+…−\mathrm{sin}\:\theta \\ $$$$=\mathrm{0} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *