Menu Close

each-J-z-Y-z-are-linear-independent-W-Ronskian-J-z-Y-z-determinant-J-z-Y-z-J-z-Y-z-J-1-z-Y-z-J-z-Y-1-z-J-1-




Question Number 220502 by SdC355 last updated on 14/May/25
each J_ν (z),Y_ν (z) are linear independent....??  W_(Ronskian) {J_ν ^  (z),Y_ν (z)}= determinant (((J_ν (z)),( Y_ν (z))),((J_ν ′(z)),(Y_ν ′(z))))  =J_ν ^((1)) (z)Y_ν (z)−J_ν (z)Y_ν ^((1)) (z)  J_ν ^((1)) (z)Y_ν (z)=J_(ν−1) (z)Y_ν (z)−(ν/z)J_ν (z)Y_ν (z)  J_ν (z)Y_ν ^((1)) (z)=Y_(ν−1) (z)J_ν (z)−(ν/z)J_ν (z)Y_ν (z)  J_(ν−1) (z)Y_ν (z)−J_ν (z)Y_(ν−1) (z)....  .....damn.....  Result is (2/(πz)) ......
$$\mathrm{each}\:{J}_{\nu} \left({z}\right),{Y}_{\nu} \left({z}\right)\:\mathrm{are}\:\mathrm{linear}\:\mathrm{independent}….?? \\ $$$${W}_{\mathrm{Ronskian}} \left\{{J}_{\nu} ^{\:} \left({z}\right),{Y}_{\nu} \left({z}\right)\right\}=\begin{vmatrix}{{J}_{\nu} \left({z}\right)}&{\:{Y}_{\nu} \left({z}\right)}\\{{J}_{\nu} '\left({z}\right)}&{{Y}_{\nu} '\left({z}\right)}\end{vmatrix} \\ $$$$={J}_{\nu} ^{\left(\mathrm{1}\right)} \left({z}\right){Y}_{\nu} \left({z}\right)−{J}_{\nu} \left({z}\right){Y}_{\nu} ^{\left(\mathrm{1}\right)} \left({z}\right) \\ $$$${J}_{\nu} ^{\left(\mathrm{1}\right)} \left({z}\right){Y}_{\nu} \left({z}\right)={J}_{\nu−\mathrm{1}} \left({z}\right){Y}_{\nu} \left({z}\right)−\frac{\nu}{{z}}{J}_{\nu} \left({z}\right){Y}_{\nu} \left({z}\right) \\ $$$${J}_{\nu} \left({z}\right){Y}_{\nu} ^{\left(\mathrm{1}\right)} \left({z}\right)={Y}_{\nu−\mathrm{1}} \left({z}\right){J}_{\nu} \left({z}\right)−\frac{\nu}{{z}}{J}_{\nu} \left({z}\right){Y}_{\nu} \left({z}\right) \\ $$$${J}_{\nu−\mathrm{1}} \left({z}\right){Y}_{\nu} \left({z}\right)−{J}_{\nu} \left({z}\right){Y}_{\nu−\mathrm{1}} \left({z}\right)…. \\ $$$$…..\mathrm{damn}….. \\ $$$$\mathrm{Result}\:\mathrm{is}\:\frac{\mathrm{2}}{\pi{z}}\:…… \\ $$
Answered by MrGaster last updated on 14/May/25
=J_ν (z)Y_ν ^′ (z)−J_ν ^′ (z)Y_ν (z)  J′_ν (z)=J_(ν−1) (z)−(ν/z)J_ν (z)  Y′_ν (z)=Y_(ν−1) (z)−(ν/z)Y_ν (z)  ⇒W=J_ν (z)(Y_(ν−1) (z)−(ν/z)Y_ν (z))−Y_ν (z)(J_(ν−1) (z)−(ν/z)J_ν (z))  =J_ν (z)Y_(ν−1) (z)−(ν/z)J_ν (z)Y_ν (z)−Y_ν (z)J_(ν−1) (z)+(ν/z)J_ν (z)Y_ν (z)  =J_ν (z)Y_(ν−1) (z)−Y_ν (z)J_(ν−1) (z)  ∵J_ν (z)Y_(ν−1) (z)−J_(ν−1) (z)Y_ν (z)=(2/(πz))  ∴W_(Ronskian) {J_ν ^  (z),Y_ν (z)}=(2/(πz))
$$={J}_{\nu} \left({z}\right){Y}_{\nu} ^{'} \left({z}\right)−{J}_{\nu} ^{'} \left({z}\right){Y}_{\nu} \left({z}\right) \\ $$$${J}'_{\nu} \left({z}\right)={J}_{\nu−\mathrm{1}} \left({z}\right)−\frac{\nu}{{z}}{J}_{\nu} \left({z}\right) \\ $$$${Y}\underset{\nu} {'}\left({z}\right)={Y}_{\nu−\mathrm{1}} \left({z}\right)−\frac{\nu}{{z}}{Y}_{\nu} \left({z}\right) \\ $$$$\Rightarrow{W}={J}_{\nu} \left({z}\right)\left({Y}_{\nu−\mathrm{1}} \left({z}\right)−\frac{\nu}{{z}}{Y}_{\nu} \left({z}\right)\right)−{Y}_{\nu} \left({z}\right)\left({J}_{\nu−\mathrm{1}} \left({z}\right)−\frac{\nu}{{z}}{J}_{\nu} \left({z}\right)\right) \\ $$$$={J}_{\nu} \left({z}\right){Y}_{\nu−\mathrm{1}} \left({z}\right)−\frac{\nu}{{z}}{J}_{\nu} \left({z}\right){Y}_{\nu} \left({z}\right)−{Y}_{\nu} \left({z}\right){J}_{\nu−\mathrm{1}} \left({z}\right)+\frac{\nu}{{z}}{J}_{\nu} \left({z}\right){Y}_{\nu} \left({z}\right) \\ $$$$={J}_{\nu} \left({z}\right){Y}_{\nu−\mathrm{1}} \left({z}\right)−{Y}_{\nu} \left({z}\right){J}_{\nu−\mathrm{1}} \left({z}\right) \\ $$$$\because{J}_{\nu} \left({z}\right){Y}_{\nu−\mathrm{1}} \left({z}\right)−{J}_{\nu−\mathrm{1}} \left({z}\right){Y}_{\nu} \left({z}\right)=\frac{\mathrm{2}}{\pi{z}} \\ $$$$\therefore{W}_{\mathrm{Ronskian}} \left\{{J}_{\nu} ^{\:} \left({z}\right),{Y}_{\nu} \left({z}\right)\right\}=\frac{\mathrm{2}}{\pi{z}} \\ $$
Commented by SdC355 last updated on 14/May/25
I mean why J_ν (z)Y_(ν−1) (z)−J_(ν−1) (z)Y_ν (z)=(2/(πz))  can′t Caculate anymore
$$\mathrm{I}\:\mathrm{mean}\:\mathrm{why}\:{J}_{\nu} \left({z}\right){Y}_{\nu−\mathrm{1}} \left({z}\right)−{J}_{\nu−\mathrm{1}} \left({z}\right){Y}_{\nu} \left({z}\right)=\frac{\mathrm{2}}{\pi{z}} \\ $$$$\mathrm{can}'\mathrm{t}\:\mathrm{Caculate}\:\mathrm{anymore} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *